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ABSTRACT
is book, Active Filters and Amplifier Frequency Response, is the third of four books of a larger
work, Fundamentals of Electronics. It is comprised of three chapters that describe the frequency
dependent response of electronic circuits. is book begins with an extensive tutorial on creating
and using Bode Diagrams that leads to the modeling and design of active filters using operational
amplifiers. e second chapter starts by focusing on bypass and coupling capacitors and, after
introducing high-frequency modeling of bipolar and field-effect transistors, extensively develops
the high- and low-frequency response of a variety of common electronic amplifiers. e final
chapter expands the frequency-dependent discussion to feedback amplifiers, the possibility of
instabilities, and remedies for good amplifier design.

Fundamentals of Electronics has been designed primarily for use in an upper division course
in electronics for electrical engineering students and for working professionals. Typically such a
course spans a full academic year consisting of two semesters or three quarters. As such, Active
Filters and Amplifier Frequency Response, and the first two books in the series, Electronic Devices
and Circuit Applications, and Amplifiers: Analysis andDesign, form an appropriate body of material
for such a course.

KEYWORDS
active filters, frequency response, Bode plot, filter, Butterworth, low-pass, high-pass,
band-pass, band-stop, Chebyshev, switched capacitor, gain margin, phase margin,
cutoff frequency, high frequency transistor modeling, Miller’s theorem, capacitive
coupling, Cascode, Darlington, multipole feedback frequency response, Nyquist sta-
bility, dominant pole compensation, compensation networks
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Preface
In the previous two books of this series, all electronic circuit operation was considered to be
either at near-zero frequency or in the “midband” region of operation. e midband range of
frequencies, vitally important to amplifier discussions, is characterized by two basic simplifying
assumptions:

• e midband frequencies are large enough so that discrete circuit capacitors appear to have
negligible impedance with respect to the resistances in the circuit, and

• e midband frequencies are small enough so that the active elements (transistors,
OpAmps, etc.) appear to have frequency-invariant properties.

It is the purpose of this book to explore the variation of circuit behavior over the entire range
of frequencies. In addition to exploring frequency dependence, the time domain equivalence of
these effects is explored.

A review of the characteristics of ideal filters and frequency response plots leads into the
design of active filters. Active Butterworth and Chebyshev filter design is discussed in this section
using OpAmps as the active circuit elements. Discussion of passive filters and filters with other
active elements is saved until the chapter in Book 4 on communication circuits. e frequency
response limitations of OpAmps provide an introduction to limitations common in other devices.

Transistor amplifier frequency response is first discussed through the effects of coupling
and bypass capacitors. Once those principles are mastered, modified models for the diode, BJT
and FET are introduced to model the high-frequency limitations of common devices and the
result of these limitations on the frequency response of amplifier circuits. e effect of feedback
on frequency response is initially presented as a special case of stabilization: here stabilization
against variation in element value change due to frequency. Feedback effects on pole migration is
emphasized. Compensation against possible instabilities or oscillations is explored extensively.

In this book, amplifier oscillations are considered an undesirable condition. In the next
book of this series, these instabilities are explored in the design of linear oscillators.

omas F. Schubert, Jr. and Ernest M. Kim
March 2016
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C H A P T E R 9

Active Filters
An electronic filter is defined as a device that separates, passes, or suppresses an electronic signal
(or group of signals) from a mixture of signals. Most common among all possible filters are those
that separate signals according to the signal frequency content. is type of filter is found in
virtually every common electronic device. As an example, consider a radio receiver. e antenna
system for a radio receiving system receives a wide range of frequencies associated with many
distinct radio stations. A radio receiver attached to that antenna system can be tuned to receive
any particular station: its input filter section passes only those frequencies associated with that
station and blocks all other frequencies. Of interest in this chapter are the characterization and
design of such frequency-selective filters

Electronic frequency-selective filters are divided into two major groups based on the cir-
cuit elements making up the filter: passive filters and active filters. Passive electronic filters are
commonly constructed using the basic passive building blocks familiar to all electrical engineers:
resistors, capacitors, and inductors. ese filters are of great value particularly in high power and
high frequency applications.¹ In low frequency applications, the high-value inductances required
in passive filter designs present several problems. Large value inductors are physically large, heavy,
non-linear, and usually have a relatively large loss factor. In addition, the magnetic fields they gen-
erate are a source of electromagnetic interference. In many designs one or more of these features
is undesirable. It is therefore often necessary to design filters that contain only resistors and ca-
pacitors. e addition of another common building block, the operational amplifier, allows for
the design of these lower frequency filters as efficient and cost effective devices. e inclusion of
an active device in the design has led to calling these filters, “active filters.”

e approach to active filter design and characterization developed in this chapter begins
with a review of frequency response characterization in the form of Bode plots. is form of
graphical representation of filter response leads to a presentation of the four basic ideal types
of frequency-selective filters: high-pass, low-pass, bandpass, and bandstop. Since ideal filter re-
sponse is not achievable in the real world, several common, realistic filter response approximations
are discussed and compared.e design process necessary to realize the four basic filter types using
OpAmps, resistors, and capacitors is developed and explored.

Resistor size, weight, and power dissipation can also present problems to the filter designer.
In integrated circuits, one low-frequency solution to the problem is switched-capacitor filters.

¹A discussion of the uses of passive filters in communication circuits can be found in Chapter 15 (Book 4). Of particular interest
is the discussion of tradeoffs between active and passive filters.
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ese filters are closely related to standard active filters where the resistors are replaced by rapidly
switched capacitors. A discussion of this variation of active filters is found in Section 9.7.

Although OpAmps are highly useful electronic building blocks, they do have limitations.
Most significant in filter design is the degradation in the voltage gain with frequency. e chapter
ends with a discussion of the limitations of active filters designed with the use of OpAmps.

9.1 BODEPLOTS
Characterization of electronic systems in the frequency domain is directly related to time-domain
system response. e response of a linear time-invariant system, xo.t/, to an arbitrary input, xi .t/,
can be characterized, in the time-domain, by its impulse response, h.t/:

xo.t/ D

Z t

0

h.t � �/xi .�/ d�: (9.1)

While the convolution integral of Equation (9.1) has great utility inmany situations,² a frequency-
domain characterization of the system ismore typical.e frequency-domain response of a system
can be obtained by taking the Fourier Transform of the output quantity, xo.t/:

Xo.!/ D Ffxo.t/g D

Z 1

�1

xo.t/e
�j!t dt (9.2)

which reduces to

Xo.!/ D H.!/Xi .!/: (9.3)

e spectrum of the output quantity,Xo.!/, is the product of the input quantity spectrum,Xi .!/,
and the transfer function of the system,H.!/. e impulse response and the transfer function of
a system are related by the Fourier Transform:

H.!/ D Ffh.t/g: (9.4)

is frequency-domain transfer function is most typically characterized by its fundamental parts
in polar form:

• jH.!/j—the magnitude response, and

• †H.!/—the phase response.

One of the most useful representations of these two quantities is a pair of plots. e typical
format for these plots is the magnitude (on either a linear or a decibel scale) or the phase (in either
degrees or radians) as the ordinate and frequency (on a logarithmic scale) as the abscissa. While
²Time-domain characteristics of electronic circuits and the relationship of these characteristics to the frequency-domain char-
acteristics are discussed in Chapters 10 and 11 in Book 3 and Chapters 12 and 13 in Book 4.
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many computer simulation programs exist for the efficient creation of such plots, much insight
into the functioning of a filter (or any electronic circuit) and the dependence of the responses to
circuit parameter variation can be gained by the manual creation of simple straight-line approxi-
mations to these magnitude and phase plots. Plots of the magnitude of the transfer function, in
decibels, and the phase of the transfer function are called Bode plots.³ e two plots together form
a Bode diagram.

Mathematical Derivations
e response of a linear system to sinusoidal inputs can be described as the ratio of two polyno-
mials in frequency, !:

H.!/ D Ko
Zm.!/

Pn.!/
: (9.5)

Here Zm.!/ is an mth order polynomial whose roots identify the m zeroes of the response. e
roots of Pn.!/ identify the n poles. For all real electronic systems, the response must not increase
as frequency becomes infinite; thus the number of polesmust be equal to or larger than the number
of zeroes, n � m. Equation (9.5) can be expanded to be of the form:

H.!/ D Ko
1C .j!/a1 C .j!/2a2 C : : :C .j!/mam

1C .j!/b1 C .j!/2b2 C : : :C .j!/nbn
: (9.6)

e numerator and denominator polynomials,Zm.!/ andPn.!/ respectively, can each be written
as a factored product of multiples of four types of simple function, hereafter identified as factors,
fF.!/g:

1. Ko — a constant

2. j! — a root at the origin

3. 1C
j!
!o

— a simple root at ! D !o

4. 1C 2� j!
!o

C

�
j!
!o

�2
— a complex conjugate root pair.

Each of these four simple functions has a straight-line approximate Bode representation.
e use of decibels (a logarithmic function) as a vertical scale for the magnitude plot and a linear
scale for phase converts the product of the factors into the sum of the factor magnitudes (in dB)
and the sum of the factor phases: division becomes subtraction.erefore the total system response
plot becomes the algebraic sum of the plots of the individual simple factors describing the system.

³Named for Hendrik Wade Bode (1905–1982). One early reference is his book Network Analysis and Feedback Design, Van
Nostrand, New York, 1945.
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9.1.1 BODEPLOTSOFTHEFACTORS
e Bode magnitude straight-line representation of each of the four simple factors is unique. e
Bode phase straight-line representation is unique for two of the factors (a constant and a root at
the origin) and universally standardized for a third (a simple root). However, a variety of approx-
imate representations for the phase of a complex conjugate root pair exists in the literature. e
representation for a constant and for a root at the origin is exact: the other two factor representa-
tions are asymptotic in the case of magnitude and approximate in the case of phase. A discussion
of each Bode representation follows. A summary can be found in Table 9.1.

A constant:
e most simple of the factors is a constant.

FC .!/ D K: (9.7)

Here themagnitude is constant at 20 log jKj.e phase plot is also constant at � D 0ı or � D 180ı

depending on the mathematical sign of K. Each plot is an exact representation of the factor.

A pole or zero at zero frequency:
A pole or zero at the origin also has a simple Bode representation. e factor is of the form:

F0.!/ D j!: (9.8)

e magnitude plot is a straight line on a logarithmic frequency scale:

jF0.!/jdB D 20 log jj!j D 20 log.!/: (9.9)

If the factor is in the numerator (indicating a zero), this straight line has a slope of
C20 dB/decade:⁴ denominator factors (poles) have a slope of �20 dB/decade. In each case the
line passes through the point {0 dB, 1 rad/s).

e factor phase is constant at � D 90ı (or � radians). Consequently, the phase plot for
zeroes will be at C90ı and at �90ı for poles.

A simple pole or zero at ! D !o:
Single poles and zeroes not at the origin have more complex plots. e factor form for a simple
pole is:

F1 .!; !o/ D 1C
j!

!o
; (9.10)

⁴A decade is a change in frequency by a factor of ten (10). A slope of 20 dB/decade is also identified in some sources as
6 dB/octave, where an octave is a frequency change by a factor of two (2).
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where !o is the pole (zero) frequency. e magnitude of the factor (in dB) is given by:

jF1 .!; !o/jdB D 20 log

s
1C

�
!

!o

�2
D 10 log

 
1C

�
!

!o

�2!
: (9.11)

e phase is given by:

†F1 .!; !o/ D tan�1

�
!

!o

�
: (9.12)

ese two components of the simple factor are shown in Figure 9.1 as if the factor were in the de-
nominator (representing a pole). Also shown in the figure are the Bode straight-line approximate
plots.

e Bode plot of the magnitude is an asymptotic approximationand is made up of two
intersecting straight lines that form a piecewise continuous plot. If ! � !o, F.!/ � 1 and the
magnitude plot is constant at 0 dB. If ! � !o,

jF1 .!; !o/jdB � 10 log
 �

!

!o

�2!
D 20 log .!/ � 20 log .!o/ : (9.13)
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Figure 9.1: A simple pole Bode diagram.

e asymptote is a straight line with slope of 20 dB/decade that intersects the 0 dB line
at ! D !o. e Bode approximation transitions between the two asymptotic lines at the root
frequency where the approximation has its greatest error (20 log.2/ � 3:01 dB).
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As can be seen in Figure 9.1, the factor phase never exceeds 90ı and essentially all phase
change takes place within ˙one decade of !o.†F1.0:1!o; !o/ D 5:71ı and †F1.10!o; !o/ D

84:29ı). Beyond one decade from the root, !o, the phase is approximated by a constant:

! < 0:1!o — †F1.!; !o/ D 0ı

! > 10!o — †F1.!; !o/ D 90ı:

Within ˙ decade of !o, the phase can be approximated by a straight line of slope 45ı/decade:

0:1!o < ! < 10!o —†F.!/ D 45ı
flog.10!=!o/g:

is straight-line Bode approximation has a maximum error of � 5:71ı.
e error introduced by the Bode straight-line approximations has distinct symmetry about

!o (Figure 9.2). Any corrections to the plots, if necessary, are accomplished by interpolation and
comparison to standard plots. Some data points that are helpful in making accurate corrections
are:

• Magnitude plot

– e magnitude error at !o is 3.01 dB
– e magnitude error at ˙ one octave (0:5!o and 2!o) is 0.97 dB

• Phase plot

– Slope at !o is � 66ı/decade
– e phase error is zero at 0:159!o; !o, and 6:31!o
– e phase error at ˙ one decade is ˙5:71ı

Complex conjugate pole or zero pairs
A complex conjugate root pair presents a more complex relationship. e appropriate form of the
factor is given by:

F2 .!; !o; �/ D 1C 2�
j!

!o
C

�
j!

!o

�2
(9.14)

where !o is identified as the resonant frequency and � is the damping factor.⁵ A plot of the
magnitude and phase response for a complex pair of poles with the damping factor as a parameter
(0:2 � � � 0:9 in increments of 0.1) is shown in Figure 9.3.

e variation of the plot with damping coefficient makes straight-line approximations near
the resonant frequency questionable. Still, at about a third of a decade or larger from the reso-
nant frequency, reasonable approximations of the magnitude plot can be made. Once again, if

⁵e damping factor lies in the range, 0 � � < 1, for complex conjugate root pairs.
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Figure 9.2: Bode straight-line approximation error: simple root.
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! � !o; F .!/ � 1 and the approximate magnitude plot is constant at 0 dB. If ! � !o,

jF2 .!; !o; �/jdB � 20 log
ˇ̌̌̌
ˇ
�
j!

!o

�2 ˇ̌̌̌ˇ D 40 log.!/ � 40 log.!o/: (9.15)

In this region the magnitude has a slope of 40 dB/decade with an intercept of the 0 dB axis at
! D !o. Near the resonant frequency, there can be a large difference between the approximate
Bode magnitude plot and the true magnitude plot. Depending on the application, corrections
to the curve may be necessary. ese corrections can usually be accomplished with the addition
of only a few data points and interpolation. Two helpful data points are the magnitude at the
resonant frequency and the magnitude of the peak in the curve (if one exists). e magnitude at
the resonant frequency is given by:

jF2 .!o; !o; �/jdB D 20 log .2�/ : (9.16)

For damping coefficients less than, a 1=
p
2 valley occurs in the magnitude of the factor. is valley

will occur at the maximum difference between the true magnitude plot and the Bode straight
line approximation (Figure 9.4). Interesting, this valley in the factor magnitude plot is usually
encountered with the factor in the denominator and is consequently identified in the literature as
a “peak.” If only the factor is considered, the valley (peak) occurs at a frequency somewhat lower
than the resonant frequency:

!peak D !o
p
1 � 2�2; (9.17)

and has value, ˇ̌
F2
�
!peak; !o; �

�ˇ̌
dB D 20 log

�
2�
p
1 � �2

�
: (9.18)

In cases where a complex-conjugate pair of poles cancels lower frequency zeroes so that the
asymptotic plot is a constant for frequencies higher than the resonant frequency, the peak, neces-
sarily of the same magnitude, occurs at a frequency somewhat higher than the resonant frequency:

!peak D
!op
1 � 2�

2
: (9.19)

eBode phase plot for a complex root pair is also simplified into a three-segment, straight-
line plot. However, the damping coefficient complicates the location of the transition between
segments. At frequencies much lower than the resonant frequency, the phase is near constant at
0ı: at frequencies much higher than !o, the phase is near constant at 180ı. Near !o the Bode
approximate curve is a straight line joining the other segments.

e location of the transition points between the segments of the approximate Bode phase
plot is not uniformly described in the literature: a �-independent approximation and at least two
approximations that depend on the value of � are to be found. e �-independent approximation
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Figure 9.4: Bode straight-line magnitude error: complex conjugate root pair.

chooses a transition points at ˙ one decade, while the most prevalent of the �-dependent approx-
imations vary the transition points (as a fraction of a decade) linearly with damping coefficient,
�.

Of the �-dependent approximations found in the literature, it has been shown that the
decade-fraction approximation more closely approximates the phase plot variation with damping
coefficient under a variety of criteria. e decade-fraction approximation identifies the transition
frequencies as lying ˙� decades from the resonant frequency. e constant phase regions are a
function of � and are described as:

! < !o10
�� — †F2.!; !o; �/ D 0ı

! > 10�!o — †F2.!; !o; �/ D 180ı:

e phase between the two constant phase regions is approximated by a straight line of slope
(90=�/ı/decade passing through the point !o; 90ı:

!o10
�� < ! < 10�!o — †F2.!; !o; �/ D

90ı

�

�
log

�
!

!o

��
C 90ı

was the case in first order factors, the error introduced by the Bode straight-line approximations
has distinct symmetry about !o. Any corrections to the plots, if necessary, are accomplished by
interpolation and comparison to standard plots. Some data points that are helpful in making
accurate corrections to the phase plot are:

• Phase plot slope at !o is � .132=�/ı/decade
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• e phase error goes to zero at:

• ! D !o

• ! D 10˙.0:3�2C0:49�C0:01/.

• e magnitude of the phase error at the transition points (! D !o10
˙� ) is:

• � �15:8� C 27:2 for � � 0:4

• D 10�3 � 22:8�2 � 0:7� C 23:5 (all values of �).

e decade-fraction �-dependent Bode phase approximation is shown in Figure 9.5 for two
values of � along with the actual phase plots. Helpful data points, as identified above, are marked
with a “C” sign.

 = 0.7 

 = 0.3 

H

da

elpful 

ata points

ζ

ζ

Figure 9.5: e decade-fraction �-dependent Bode phase approximation.

eBode approximate plots for each of the four factors are summarized in Table 9.1 as if the
factors are in the denominator. Factors in the numerator will have positive slopes andmathematical
signs but otherwise be similar in shape. Total Bode plots are the sum of the plots of the factors.

Time delay
Systems with an inherent time delay, td , will experience a fifth factor: a phase shift that is linear
with frequency:

FD.!/ D e�j!td :

edelay factor has a Bodemagnitude plot that is constant at zero dB: the systemBodemagnitude
plot is unchanged by the factor. Unfortunately the phase is linear with frequency f� D �td!g and
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does not have a “nice” plot on a logarithmic frequency scale: each decade in frequency experiences
ten times the phase variation of the decade directly lower in frequency. Typically, any system delay
is treated separately from the Bode phase plots: in systems where the time delay is small compared
to the period of the highest frequency present, delay effects are usually considered insignificant
and consequently ignored. A Bode diagram of the delay factor is shown in Figure 9.6.

Table 9.1: Bode factor magnitude and phase plots

Factor Bode Magnitude Plot Bode Phase Plot
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o
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Temporal frequency vs. angular frequency
eoretical derivations of Bode factors tend to utilize angular frequency (!: rad/s). However, in
the real world, it is likely that systems will be described using temporal frequency (f : Hz).
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Figure 9.6: Time delay factor Bode diagram.

e functional form of the response, H.!/ or H.f /, is identical and conversions can be
made using ! D 2�f . e only other difference appears in a difference in the constant factor FC
for a particular system. If there are simple roots at the origin .F0 D j!/, the constant terms in
H.!/ and H.f / for the system {K! and Kf respectively} will differ by a factor:

Kf D .2�/m�nK! :

Where m � n is the number of simple roots at the origin in the numerator minus those in the
denominator.

Example 9.1 (Drawing Bode plots)
Draw the Bode diagram for the following transfer function:

H .!/ D

�
0:836 � 10�3

�
Œj!�2�

1C
j!

150

� �
1C

j!

800

�"
1C

j!

625 � 103
C

.j!/2

250 � 109

# :

Solution:
e Bode diagram consists of the Bode magnitude plot and the Bode phase plot. e given

transfer function contains all of the primary factor types:

• a constant

• two zeroes at the origin

• two simple poles
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• a complex conjugate pair of poles

e Bode magnitude plot for the constant is a horizontal line at:

20 log
�
0:836 � 10�3

�
D �61:56 dB:

e Bode magnitude plot for the two zeroes at the origin has slope of C40 dB/decade (2 �

20 dB/decade) and passes through (0 dB, 1 rad/sec). e simple poles each introduce a slope in-
crement of �20 dB/decade beginning at the pole frequencies:

!p1 D 150 rad=sec and !p2 D 800 rad=sec:

e complex pair of poles will introduce a slope increment of �40 dB/decade at the resonant
frequency:

!2o D 250 � 109 ) !o D 500 � 103 rad=sec:

e pole pair damping coefficient is calculated to be:

2�

!o
D

1

625 � 103
) � D 0:4:

e magnitude at the resonant frequency can then be (optionally) corrected by determining:

jF2 .!o; !o; 0:4/j D 2 � 0:4 D 0:8 ) �1:94 dB:

Since the damping coefficient is less than 1=p2 and the factor cancels out lower frequency zeroes,
a peak in the magnitude response exists above the resonant frequency at:

!peak D !o
p
1 � 2�2 D 400 � 103.0:825/ D 329:9 � 103 rad=sec:

Consequently, the other optional correction point has value:ˇ̌
F2
�
!peak; !0; 0:4

�ˇ̌
D 2.0:4/

p
1 � 0:42 D 0:733 ) �2:70 dB:

Since the complex conjugate pair are poles, the factor lies in the denominator, the slope is
�40 dB/decade, and the signs of the magnitude corrections are reversed (making them both, in
this case, positive).

e magnitude plot is constructed as follows:

• A low-frequency starting point is found where the sum of all factors is known and below
any pole (or zero) frequencies (other than those at the origin). Here ! D 10 is a good choice
(evaluate the constant and the zeroes at the origin): jH.10/j � �61:56C 20 dB C 20 dB D

�21:56 dB.

• e slope of the plot at the above point is 20 dB/decade � (number of poles at origin), i.e.,
40 dB/decade.
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• e pole and zero frequencies are located and marked: Simple poles (down) and zeroes (up)
by an arrow. Similarly, complex conjugate pairs are marked by a double arrow.

• e plot slope is incremented at the arrow frequencies by 20 dB/decade in the direction of
the arrow. Multiple arrows at the same frequency indicate a multiplicative change in slope.

• Any higher order corrections are then made (if desired).

e resultant uncorrected Bode straight-line magnitude plot, four optional correction points
(marked by “C”), and the exact magnitude plot for this system are shown in Figure 9.7.

e Bode phase plot for the constant and each of the zeroes at the origin are simple hori-
zontal lines at 0ı and 90ı respectively. Each simple pole will increment the phase by �45ı/decade
at one decade below the pole frequency and decrement the phase by the same quantity one decade
above the pole frequency. For the complex conjugate pair phase plot, the frequency range where
the phase changes must be calculated by determining the quantity:

10� D 100:4 D 2:51:
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Figure 9.7: Magnitude of the frequency response for Example 9.1 with the Bode approximation over-
lay.
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e transition frequencies for the phase change are then determined:
!o

2:51
< ! < 2:51!o ) 199 � 103 < ! < 1:26 � 106:

Since the factor is in the denominator, the phase plot between the transition frequencies has a
slope increment of:

�90

�
D �225ı=decade:

e phase plot is constructed as follows:

• A low-frequency starting point is found where the sum of all factors is known and at least
one decade below any pole (or zero) frequencies (other than those at the origin): here ! D

0:1 is a good choice: †H.0:1/ � 0ı C 90ı C 90ı � 0ı � 0ı � 0ı D 180ı.

• e phase plot transition frequencies are located and marked. Simple poles and zeroes by
opposing arrow pairs at one tenth and ten times the pole or zero frequency (15 & 1500;
80 & 8000): complex conjugate root pairs by opposing arrow pairs at the calculated slope
transition frequencies (199 � 103 & 1:26 � 106).

• e phase plot slope is changed at the arrow frequencies by the appropriate amount in the
direction of the arrow.

• Any higher order corrections are then made (if desired).

e system uncorrected Bode straight-line approximate phase plot and the exact phase plot
are shown in Figure 9.8. Six optional correction points (marked by “C”) are also shown. Note that
while these optional correction points improve the curve in regions where roots are far apart, in
regions where the root transition regions overlap (i.e., at 80 and 1500 rad/s), their use may not
improve the overall curve.

Example 9.2 (Drawing Bode plots—alternate method)
Draw the Bode diagram for the following transfer function:

H.!/ D
�1:25 � 10�3Œj!�2�

1C
j!

100

� �
1C

j!

800

� �
1C

j!

100 � 103

� �
1C

j!

600 � 103

� :
Solution:

e Bode diagram consists of the Bode magnitude plot and the Bode phase plot. e given
transfer function contains three of the primary factor types:

• a constant
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Figure 9.8: Phase of the frequency response for Example 9.1 with the Bode approximation overlay.

• two zeroes at the origin

• four simple poles

– two at low frequencies (100 and 800 rad/sec)

– two at high frequencies (100 and 600 krad/sec)

is particular form of the transfer function is quite common in electronic applications. Low-
frequency poles (in this case, two) are canceled by the same number of zeroes at the origin resulting
in a middle range of frequencies (the midband region) where the transfer function is essentially
constant, and regions of decreasing gain as frequency varies from the midband region for both
higher and lower frequencies. Similarly, the phase is relatively constant in the midband region.
In such a situation, the Bode plot can be begun in the midband region and progress outwards.
One should note that this method is not dependent on the poles being simple: the presence of
complex conjugate pole pairs does not change the method described as long as there is a midband
region of essentially constant gain or phase.

e value of the transfer function in the midband region can be determined by assuming a
midband frequency, !mid, that is conceptually much larger than the largest of the low-frequency
poles, but much smaller than the smallest of the high-frequency poles. Under that assumption,
the pole factors take on a simpler form and result in an approximate transfer function value in the
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midband region:

H .!mid/ �
�1:25 � 10�3 Œj!mid�

2�
j!mid

100

� �
j!mid

800

�
Œ1� Œ1�

D �100:

e Bode magnitude plot for this example in the midband region becomes a horizontal line at:
20 log j � 100j D 40 dB.

e magnitude plot is constructed as follows:

• e plot begins in the midband region with a horizontal line at the midband gain value:
here, 40 dB.

• e pole and zero frequencies are located and marked: Simple poles (down) and zeroes (up)
by an arrow. Similarly, complex conjugate pairs are marked by a double arrow.

• e plot slope is incremented at the arrow frequencies by 20 dB/decade in the direction of
the arrow. Multiple arrows at the same frequency indicate a multiplicative change in slope.

• Any higher order corrections are then made (if desired).

e resultant uncorrected Bode straight-line magnitude plot and the exact magnitude plot for
this system are shown below in Figure 9.9.

e Bode phase plot can be similarly constructed from the midband outward. e phase
plot is constructed as follows:

• e plot begins in the midband with a horizontal line at the midband phase value: here,
†H.!mid/ � †.�100/ D ˙180ı.

Since poles introduce negative angles, �180ı is more commonly chosen.

• e phase plot transition frequencies are located and marked. Simple poles and zeroes by
opposing arrow pairs at one tenth and ten times the pole or zero frequency: complex con-
jugate root pairs by opposing arrow pairs at the calculated slope transition frequencies with
the appropriate slope increment noted.

• e phase plot slope is changed at the arrow frequencies by the appropriate amount in the
direction of the arrow.

• Any higher order corrections are then made (if desired).

e system uncorrected Bode straight-line approximate phase plot and the exact phase plot are
shown as the second plot (Figure 9.10).
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9.2 FILTERCHARACTERISTICS
Filters are classified according to the function that they perform. Ideal frequency selective filters
have three fundamental design goals:

• To have no attenuation of input signals over a range of frequencies, called the passband.

• Over another, distinct range of frequencies, called the stopband, to have complete attenua-
tion of input signals.

• To have no distortion of signals whose frequency content lies within the passband.

e relative frequency location of the passband and the stopband give rise to the four most
common types of filters: low-pass, high-pass, band-pass, and band-stop. e magnitude of the
ideal frequency response characteristics of these four filter types is depicted in Figure 9.11.

An ideal low-pass transfer characteristic is shown in Figure 9.11a with the passband ex-
tending from zero frequency to a cutoff frequency, ! D !c , and the stopband extending from !c
to infinite frequency. e filter gain in the passband is unity and zero in the stopband. e ideal
high-pass filter of Figure 9.11b is the inverse of the low-pass filter: the stopband extends from
zero frequency to ! D !c and the passband from !c to infinite frequency. A band-pass filter
(Figure 9.11c) has a single passband extending in the frequency range, !1 < ! < !2, while all
other frequencies are stopped. Band-stop filters (Figure 9.11d) have a single stopband extending
in the frequency range, !1 < ! < !2, while all other frequencies are passed. Band-stop filters are
often called band-elimination filters or notch filters.

e requirement for constant magnitude of the frequency response in the passband is a
consequence of the need to pass signals whose frequency content lies within the passband without
distortion. In order that a signal pass through a filter without distortion, the output of the filter
must be an amplified duplicate of the input signal possibly delayed by a time lag, td :⁶

xo.t/ D Koxi .t � td /: (9.20)

e frequency domain equivalent of Equation (9.20) is obtained through the use of the Fourier
Transform:

Xo.!/ D Ffxo.t/g D

Z 1

�1

xo.t/e
�j!t dt: (9.21)

Here Xo.!/ is the spectrum of xo.t/. Replacing xo.t/ by its definition (Equation (9.20)) yields
the frequency domain relationship between the input signal spectrum and the undistorted output
signal spectrum:

Xo.!/ D Koe
�j!tdXi .!/: (9.22)

⁶e time lag for many low-frequency filters can be approximated as td � 0. As frequencies become large, the physical size
of an electronic filter and the internal capacitance of its elements can make time lag a significant property of the filter.
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Figure 9.11: Filter idealized characteristics.

e transfer characteristic of the non-distorting filter,H.!/, is interpreted from Equation (9.22)
to be the multiplier of the input signal spectrum:

H.!/ D Koe
�j!td : (9.23)

e properties of a non-distorting filter are apparent. It is necessary that, over the range
of frequencies contained in the input signal, the magnitude of the filter transfer function be con-
stant with respect to frequency and the phase shift induced by the filter be linear with respect to
frequency:

jH.!/j D Ko and †H.!/ D �!td : (9.24)

Notice that for zero time delay, td D 0, the phase shift induced by the filter is also zero.⁷
Real filters can only approximate the ideal transfer relationships depicted in Figure 9.11.

e abrupt transition between the passband and the stopband of the various types of ideal filters
is, unfortunately, impossible to achieve with a finite number of real circuit elements. In addition,

⁷Often a constant phase shift of ˙180ı (˙� radians) is also acceptable: constant ˙180ı phase shift is a simple inversion of
the signal when passing through the filter.
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zero gain in the stopband and no variation in gain in the passband are, at best, difficult to achieve.
It is necessary to relax the design goals for these filters in order to be able to design and fabricate
practical, real filters. A realistic set of practical design goals for frequency-selective filters is:

• In the passband, to have relatively small attenuation (or a gain) of input signals over a range
of frequencies. e variation in gain over the passband is specified by a maximum variation
value, 
max.

• Over the stopband, to have relatively large attenuation of input signals specified by a mini-
mum attenuation value, 
min.

• To have a transition region lying between passband and stopband specified by a passband
cutoff frequency, !c and a stopband edge, !s .

• To have minimal distortion of signals whose frequency content lies within the passband.

Figure 9.12 is a graphical representation of these design goals applied to a low-pass filter. Here the
separation of the passband and the stopband by a transition band is apparent. e ration of the
frequencies that specify the transition band, !c=!s , is called the selectivity factor and indicates
the “sharpness” of the filter. e shaded areas represent tolerances in the passband and stopband
gains: one of many possible filter responses that meet the design goals is presented as an arbitrary
example.

Passband

0

0
c

|H(  )|

Stopband

band

s

max

min

transition

ω  

ω ω ω

γ

γ

Figure 9.12: Realistic low-pass filter design goals and one possible solution.

As the tolerances for a filter are reduced, (
max reduced, 
min increased, and !c=!s in-
creased) the filter approaches ideal characteristics. While this goal may seem worthwhile in all
cases, reducing tolerances increases the complexity of the circuitry involved to accomplish the
more stringent design goals. Good design involves a balance between constraints and complexity.
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ere are several families of filters that meet the practical design goals of realistic filters in
an efficient manner. Each family meets the goals in a unique manner. Two of the families that are
common and will be discussed at length in this chapter are:

• Butterworth Filters

• Chebyshev Filters

Butterworth Filters are smooth filters. ere is no ripple in the response in either the passband
or the stopband and the transition between bands is monotonic. e edge of the passband is the
frequency at which themagnitude of the filter transfer function. jH.!/j drops by 
max.e edge of
the stopband occurs at the frequency at which jH.!/j drops by 
min below the nominal passband
gain. Chebyshev Filters have ripple in either the passband or in the stopband: once out of the
region of ripple they are monotonic. Chebyshev filters can achieve a smaller transition region as
compared to an equivalent-complexity Butterworth filter.

All real filters introduce some phase shift. In good filters this shift is reasonably linear with
frequency throughoutmost of the passband: it can be interpreted as a time delay between the input
and the output. As the order of the filter increases, the delay typically increases as well. Near the
junction between the passband and the transition region the phase shifts become increasingly
non-linear: frequencies near the edge of the passband suffer from phase distortion, as well as
magnitude distortion. Discussion of filter design criteria in the following sections will be based
primarily on the magnitude of the filter frequency response.

9.3 BUTTERWORTHFILTERS
Butterworth filters, often called maximally flat filters, are arguably the most common type of
electronic filter. ey meet the realistic goals of filters presented in the last section in a unique
manner: they are smooth filters that transition monotonically from the passband to the stop band.
e polynomials that characterize the Butterworth response are functions of only two parameters:
the order of the filter, n, and the 3 dB frequency, !o. e response of an nth order low-pass But-
terworth filter is an all-pole response characterized by the nth Butterworth polynomial, Bn.!/:

AV .!/ D
AV 0

Bn.!/
: (9.25)

e magnitude of the nth Butterworth polynomial applied to low-pass filters is given by:

jBn.!/j D

s
1C

�
!

!o

�2n
: (9.26)

ere are several interesting properties of the Butterworth polynomials. At! D !o themagnitude
of every Butterworth polynomial is:

jBn .!o/j D
p
1C .1/2n D

p
2: (9.27)
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us, !o is the frequency at which the output signal of the filter (a voltage or current) is reduced
by a factor of p

2 or, equivalently, the output power is reduced to one-half its passband value. e
half-power frequency, here !o, is also commonly called the 3 dB frequency:

20 log
�p

2
�

D 3:01030 dB � 3 dB: (9.28)

Since all Butterworth filters have a response that is reduced by 3 dB at the resonant frequency, it
is often common to specify Butterworth filters with 
max D 3 dB.

e slope of the filter magnitude response at ! D 0 is zero, and at high frequencies,
! >> !o, is �20n dB/decade. us, the order of the filter will determine the magnitude of the
response in the stopband. e magnitude frequency response plot for the first six orders of Butter-
worth low-pass filter is presented in Figure 9.13. Butterworth polynomials are generated in order
to achieve a smooth filter. In Section 9.1 it was demonstrated that the response of a system is
determined only by the roots of the transfer characteristic equation. For a Butterworth filter, the
roots of an nth order polynomial are chosen so that the first 2n � 1 derivatives of the magnitude
of the response are zero at ! D 0. ese roots can easily be derived to be:

rk;n D !oe

h
j.2kCn�1/�

2n

i
; k D 1; 2; : : : ; n; (9.29)

where rk;n is the kth root of the nth order Butterworth polynomial.
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Figure 9.13: Butterworth filter frequency response.

e Butterworth polynomial roots lie in the complex plane on a circle of radius, !o, and are
separated by an angle of by �=n. Odd order Butterworth polynomials have one real root at �!o
and .n � 1/=2 complex conjugate pairs. Even order polynomials have n=2 complex conjugate pairs
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and no real roots. the location of the roots of the fifth and sixth Butterworth polynomials is shown
in Figure 9.14.

 

ωo

n = 5 n = 6

ωo

Figure 9.14: Butterworth polynomial pole locations.

A Butterworth polynomial can therefore be characterized by !o and the damping coef-
ficient associated with each of the complex conjugate pairs. ese damping coefficients can be
calculated simply as:

�i;n D

ˇ̌̌̌
cos

�
.2i C n � 1/�

2n

�ˇ̌̌̌
; i D 1; 2; : : : ; n=2 (9.30)

where �i;n is the ith damping coefficient of the nth order Butterworth polynomial. While com-
putation of the damping coefficients is quite simple, repetitive use of the same quantities makes
a table of the first several order coefficients useful: the damping coefficients for the first eleven
Butterworth polynomials are listed in Table 9.2. It is important to remember that odd order But-
terworth polynomials also have a real root.

Example 9.3
A low-pass Butterworth filter is to be designed to meet the following design criteria:

Passband

nominal gain; AVo D 1


max D 3 dB at frequency,f3 dB D 3 kHz

Stopband

fs D 20 kHz

min D 40 dBminimum:
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Table 9.2: Butterworth filter damping coefficients

Filter 

Order 
Damping Coefficients, 

1      

2 0.7071     

3 0.5000     

4 0.3827 0.9239    

5 0.3090 0.8090    

6 0.2588 0.7071 0.9660   

7 0.2225 0.6235 0.9010   

8 0.1951 0.5556 0.8315 0.9808  

9 0.1736 0.5000 0.7660 0.9397  

10 0.1564 0.4540 0.7071 0.8910 0.9877 

11 0.1423 0.4154 0.6549 0.8413 0.9595 

ζ

Determine the order of filter necessary to achieve the design goals and the filter transfer function,
H.!/.

Solution:
e resonant frequency of the filter response is

!o D 2�f3dB D 18:85 � 103:

e order of the filter can be determined with Equation (9.26):

jBn .!/j D

s
1C

�
!

!o

�2n
) 10.

40
20 / D

s
1C

�
2�fs

2�fo

�2n
:

Which can be rearranged to solve for n:

n D

log
�
10

40
10 � 1

�
2 log

�
fs

fo

� D 2:427:

Since fractional order filters are not realistic, a third-order filter is necessary to accomplish the
design goals. A third-order filter is characterized by a real pole and a single complex conjugate
pair with damping coefficient (from Table 9.2), � D 0:5.

e filter transfer function is given by (!o D 18:85 � 103):
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H .!/ D
1�

1C
j!

!o

� 
1C

j!

!o
C

�
j!

!o

�2! :

9.3.1 ALTERNATEDEFINITIONS:
e definition of the Butterworth polynomials as given in Equation (9.26) is extremely useful for
the particular (and common) case where the edge of the passband is defined by the 3 dB frequency.
ere are, however many cases where the edge of the passband must be defined by a variation in
the gain, 
max. In those situations a slight variation in definition is necessary. e Butterworth
polynomials can be defined with a third degree of freedom:

jBn.!/j D

s
1C "2

�
!

!c

�2n
: (9.31)

Here !c is the edge frequency of the passband. At ! D !c , the magnitude of all Butterworth
polynomials is:

jBn.!/j D 
max D

p
1C "2: (9.32)

Notice that " D 1 relates to the standard definition of Butterworth polynomials given previously.
e order of the filter is determined from Equation (9.31) using the attenuation necessary in the
stopband. Once n and " are known the resonant frequency of the filter can be determined:

!o D
!c
n
p
"
: (9.33)

Example 9.4
A low-pass Butterworth filter is to be designed to meet the following design criteria:

Passband

nominal gain,AVo D 1

passband edge,fc D 3 kHz 
max D 1 dB maximum

Stopband

fs D 15 kHz 
min D 40 dB minimum

Determine the Butterworth design parameters.
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Solution:
A 1dB variation in gain in the passband sets the value of " (Equation (9.32)):p

1C "2 D 10
1

20 ) " D 0:50885:

e order of the filter can now be obtained by solving Equation (9.31):

jBn .!/j D

s
1C "2

�
!

!c

�2n
) 10

40
20 D

s
1C 0:508852

�
2�fs

2�fc

�2n
:

is has a solution n D 3:28: a fourth-order filter is necessary.
e resonant frequency of the filter is given by Equation (9.33):

!o D
!c
n
p
"

D
2� .3000/
4
p
0:50885

D 22:318 � 103 rad/s fo D 3:552 kHz:

e design goals of this filter can be met by a fourth-order Butterworth filter with resonant fre-
quency 3.552 kHz. e fourth-order Butterworth polynomial has two pairs of complex conjugate
poles with damping coefficients 0.3827 and 0.9329.

9.3.2 HIGH-PASS BUTTERWORTHCHARACTERIZATION:
High-pass Butterworth filters are characterized by Butterworth polynomials with the quantities
! and !o interchanged. is interchange has the effect of adding two zero-frequency zeroes to
the transfer function. e magnitude of the Butterworth polynomials applied to high-pass filters
is given by:

jBn .!/j D

r
1C

�!o
!

�2n
D

r
1C "2

�!c
!

�2n
: (9.34)

With the interchange of variable, all design processes are similar. e only exception is in the
determination of the resonant frequency when the passband edge frequency is used. e highpass
relationship is:

!o D
n
p
" !c : (9.35)

Example 9.5
A high-pass Butterworth filter is to be designed to meet the following design criteria:

Passband

nominal gain,AVo D 1

passband edge,fc D 3 kHz 
max D 0:5 dB
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Stopband

fs D 1 kHz 
min D 50 dB minimum:

Determine the Butterworth design parameters.

Solution:
A 0.5 dB variation in gain in the passband sets the value of " (Equation (9.32)):p

1C "2 D 10
0:5
20 ) " D 0:3493:

e order of the filter can now be obtained by solving Equation (9.34) modified to allow
for " ¤ 1:

jBn .!/j D

r
1C "2

�!c
!

�2n
) 10

50
20 D

s
1C 0:34932

�
2� fc

2�fs

�2n
:

is has a solution n D 6:197: a seventh-order filter is necessary.
e resonant frequency of the filter is given by Equation (9.35):

!o D
n
p
" !c D

7
p
0:3493 .2� .3000// D 16:220 � 103 rad/s fo D 2:581 kHz:

e design goals of this filter can be met by a seventh-order Butterworth filter with resonant
frequency 2.581 kHz. e seventh-order Butterworth polynomial has one real pole and three
pairs of complex conjugate poles with damping coefficients 0.2225, 0.6235 and 0.9010.

9.4 OPAMPREALIZATIONSOFBUTTERWORTHFILTERS
One of the major problems in designing passive high-order filters is the interaction of cascaded
filter stages. Each passive stage presents a load to preceding and following stages that can vary
the design parameters of the filter. While this is not an insurmountable problem, elimination of
stage interaction can make the design process significantly more simple. While limited to the
maximum range of frequencies at which they can operate, OpAmp circuits provide the required
isolation of stages in many electronic applications.

Individual OpAmp circuits can be placed in cascade without interaction of the individual
stages: each stage does not typically present a gain-changing load to either preceding or following
stages. us, the voltage transfer function of a cascade connection of several OpAmp stages is the
product of the individual transfer functions. Mathematically one can represent the total voltage
transfer function, AV T .!/, of a series ofN individual stages in terms of the gain of the individual
stages:

AV T .!/ D

NY
iD1

AV i .!/: (9.36)
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e voltage transfer relationship represented by Equation (9.36) is particularly useful when using
OpAmp circuits to realize the transfer function of a filter. As with the Butterworth polynomials,
filter transfer functions are specified as a product of first and second order polynomials in (j!). If
simple OpAmp circuits are constructed to have the transfer characteristic of these first and second
order polynomials, then a high-order filter can be realized with a cascade of the simple OpAmp
circuits. e OpAmp circuits must meet the following design criteria:

• e resonant frequency, !o, must be variable in both first and second order stages.

• e damping coefficient, �, of second order stages must be variable.

In the case of Butterworth low-pass and high-pass filters, !o is the 3 dB frequency and �
is the damping coefficient (tabulated in Table 9.2). Fortunately circuits that meet these design
criteria are readily available to provide all types of frequency selective filters. e specifics of each
type are sufficiently different so that discussion of low-pass, high-pass, band-pass, and band-stop
filters must be separated.

9.4.1 LOW-PASSOPAMPFILTERS:
Figure 9.15 presents the schematic representation of two stages with appropriate first and second
order low-pass voltage transfer relationships.
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Figure 9.15: Low-pass section realizations.

First order low-pass stage
e response of the first order OpAmp filter stage (Figure 9.15a) is obtained by noting that the
circuit is a non-inverting amplifier in series with a low-pass passive RC filter. e transfer char-
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acteristic is therefore given by:
vo

vi
D

1CR0=R

1C j!R1C1
: (9.37)

is circuit meets the design goal of adjustable resonant frequency. e resonant frequency, !o,
of this circuit is determined by the input RC time constant:

!o D
1

R1C1
: (9.38)

In addition the low-frequency gain of the circuit is adjustable through the elements R0 and R:

AVo D 1C
R0

R
: (9.39)

Second order low-pass stage
e second order stage (Figure 9.15b) was developed by R. P. Sallen and E. L. Key and is therefore
known as the Sallen and Key circuit. It includes, as its core element, a first order stage whose
transfer characteristic has been derived to be:

vo

vb
D

1CR0=R

1C j!R1C1
: (9.40)

e additional elements present necessitate an additional relationship so that the total transfer
characteristic can be determined. If the currents are summed at the node identified with vb the
resultant equation is:

vi � vb

R2
C .v0 � vb/ .j!C2/ �

vb

R1 C 1=j!C1
D 0: (9.41)

Equations 9.40 and 9.41 are combined to determine the transfer characteristic:
vo

vi
D

1CR0=R

1C j! Œ.R1 CR2/ C1 � .R0=R/R2C2�C .j!/2 .R1R2C1C2/
: (9.42)

is relationship is immediately recognizable as a second order low-pass characteristic with the
following parameters:

AVo D 1CR0=R; (9.43)

!o D
1

p
R1R2C1C2

: (9.44)

2�

!o
D .R1 CR2/ C1 �

�
R0=R

�
R2C2: (9.45)

is is the best of all possible worlds: there are only three constraints on the design and five
quantities to vary. While an infinite variety of possible solutions for any specific design exists,
there are two specific cases that are of particular interest and which commonly occur in electronic
design. ese cases are characterized by (a) a need for unity gain in the passband or (b) uniform
time constants in the filter section.
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Unity gain designs:
Often it is important that a filter have unity gain in the passband. is restriction leads to the
following constraints:

AVo D 1 ) R0=R D 0: (9.46)

In order to achieve the gain requirements, a short circuit is connected between the output and
the inverting input of the OpAmp and resistor R is omitted (R D 1). e transfer relationship
reduces to:

vo

vi
D

1

1C j! Œ.R1 CR2/ C1�C .j!/2 .R1R2C1C2/
: (9.47)

e pertinent design parameters are then:

!o D
1

p
R1R2C1C2

; (9.48)

and
2�

!o
D .R1 CR2/ C1: (9.49)

Example 9.6
Design a fourth-order Butterworth low-pass filter with unity gain in the passband that has a 3 dB
frequency at 1 kHz.

Solution:
A fourth order filter is constructed from two second-order stages. Each stage will have its

resonant frequency at:
!o D 2�f3 dB D 6:2832 krad/s:

e damping coefficients of the two Butterworth stages are obtained from the fourth-order row
of Table 9.2:

�1 D 0:3827 �2 D 0:9239:

While there appears to only be two constraints on the values chosen for the elements, realis-
tic solutions are of vital importance. Resistance values must be large with respect to the output
resistance of the OpAmp and small with respect to OpAmp input resistance. Limited commer-
cial capacitor availability suggests that they be chosen first. A directed approach usually produces
appropriate results, but iteration may be necessary.

For the stage with �1 D 0:3827

In working with the constraints of Equations (9.48) and (9.49), a good to start is the balance
between C1 and the sum of R1 and R2:
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Choose C1 D 0:010�F

e two constraint equations become;

R1 CR2 D 12:182 k� and R1R2C2 D 2:5330:

Here the resultant sum of resistor values is such that the resistors will probably fall into the ac-
ceptable range. Attention must now be placed on C2. Whenever the sum and the product of two
variables are known, real, non-zero solutions exist only if:

R1R2 <
.R1 CR2/

2

4
:

C2 is chosen so that criterion is met reasonably.
Choose C2 D 0:082�F ) R1R2 D 30:89 � 106.
is choice leads to the resistor values:⁸

R1 D 8:5824 k � 8:56 k� R2 D 3:5993 k � 3:61 k�:

For the stage with �1 D 0:9239, the same process is followed. In order to reduce complexity, it is
convenient to try the same capacitor values:

Choose C1 D 0:010�F ) R1 CR2 D 29:409 k� and R1R2C2 D 2:5330.

Choose C2 D 0:082�F ) R1R2 D 30:89 � 106.

ose value choices lead to the resistor values:

R1 D 1:091 k � 1:09 k� R2 D 28:318 k � 28:4 k�:

e completed design takes the final form shown below. While it is necessary to place these stages
in cascade, the order of the stages is not significant.

o
v

_

+

i
v

_

+

3.61 kΩ 8.56 kΩ 28.4 kΩ 1.09 kΩ

0.082 µF0.082 µF

0.01 µF0.01 µF

⁸Resistor values are rounded to standard values.
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Uniform time constant designs:
Another interesting special case in when the value of the low-frequency gain is not significant. It
that case, it is convenient to set the capacitors and associated resistors to specific values:

C1 D C2 D Cc R1 D R2 D Rc : (9.50)

e pertinent filter parameters are then reduced to:

!o D
1

RcCc
(9.51)

and

2� D 2 �R0=R: (9.52)

is specific choice of resistor and capacitor values separates the two main parameters of the filter
stage. e resonant frequency, !o, is controlled only by Rc and Cc : the damping coefficient is
controlled only by the gain of the individual stage.

Example 9.7
Design a fifth-order Butterworth low-pass filter with a 3 dB frequency at 1 kHz.

Solution:
A fifth-order filter is comprised of a single first-order stage and two second-order stages.

e lack of a requirement on the passband gain suggests a uniform time constant filter would be
appropriate. Table 9.2 yields the two damping coefficients necessary for a fifth-order filter:

�1 D 0:3090 �2 D 0:8090:

e filter resonant frequency is set to the 3 dB frequency:

!o D 2�f3 dB D 6:2832 krad=s:

Any reasonable pair of resistor and capacitor values that satisfy Equation (9.51) are appropriate.
One pair that utilizes standard value components is:

Rc D 5:9 k� Cc D 0:027�F:

e gain, as established by the ratio of resistors R and R0, of each second-order stage is obtained
from Equation (9.52):

R0=R D 2 � 2� D 1:382 and 0:382:

If R is set to 10 k� in each stage, the two values for R0 are (standard values):

R0
� 13:8 k� and 3:83 k�:

e gain of the first-order stage is not significant to the performance of the filter as specified. A
gain of two allows the use of identical resistors for R and R0. e final design of the specified
low-pass filter is shown in schematic form below:
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o
v

_

+

i
v

_

+

_

+

5.9 kΩ 5.9 kΩ

5.9 kΩ

5.9 kΩ

10 kΩ 3.83 kΩ10 kΩ10 kΩ 10 kΩ 13.83 kΩ

5.9 kΩ

0.027 µF0.027 µF

0.027 µF

0.027 µF0.027 µF

9.4.2 HIGH-PASSOPAMPFILTERS:
e two low-pass circuits of Figure 9.15 can be converted into high-pass filter sections simply by
interchanging the position of the numbered capacitors with the numbered resistors. Interchanging
these elements retains the same number of transfer function poles and adds zero-frequency zeroes.
Figure 9.16 presents the schematic representation of these two high-pass stages.

o
v

_

+

1
R

1
C

R R’

i
v

(a) First order high-pass

o
v

_

+

1
R

2
C

R R’

i
v

b
v

2
R

1
C

(b) Second order high-pass

Figure 9.16: High-pass section realizations.

First order high-pass stage
e first order OpAmp filter stage (Figure 9.16a) is a non-inverting amplifier in series with a
high-pass passive RC filter. e transfer characteristic is therefore given by:

vo

vi
D
.j!R1C1/ .1CR0=R/

1C j!R1C1
: (9.53)
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is circuit meets the design goal of adjustable resonant frequency. e resonant frequency, !o,
of this circuit is determined by the input RC time constant:

!o D
1

R1C1
: (9.54)

In addition the high-frequency gain of the circuit is adjustable through the elements R0 and R:

AVo D 1CR0=R: (9.55)

Second order high-pass stage
e second order high-pass stage (Figure 9.16b) transfer function is obtained in much the same
fashion as the low-pass stage. e transfer characteristic is:

vo

vi
D

.j!/2 .R1R2C1C2/ .1CR0=R/

1C j! ŒR2 .C1 C C2/ � .R0=R/R1C1�C .j!/2 .R1R2C1C2/
: (9.56)

is form is immediately recognizable as a second order high-pass characteristic with the follow-
ing parameters:

AVo D 1CR0=R; (9.57)

!0 D
1

p
R1R2C1C2

; (9.58)

2�

!0
D R2 .C1 C C2/ � .R0=R/R1C1: (9.59)

e passband gain and the resonant frequency are the same as for the low-pass case. e damping
coefficient expression is different. e same two specific design cases are of particular interest: (a)
unity gain in the passband and (b) uniform time constants in the filter section.

Unity gain designs:
Often it is important that a filter have unity gain in the passband. is restriction leads to the
following constraints:

AVo D 1 ) R0=R D 0: (9.60)
In order to achieve the gain requirements, a short circuit is connected between the output and
the inverting input of the OpAmp and resistor R is omitted (R D 1). e transfer relationship
reduces to:

vo

vi
D

.j!/2 .R1R2C1C2/

1C j! ŒR2 .C1 C C2/�C .j!/2 .R1R2C1C2/
: (9.61)

e pertinent parameters are then:

!o D
1

p
R1R2C1C2

(9.62)



684 9. ACTIVE FILTERS

and
2�

!o
D R2 .C1 C C2/ : (9.63)

Uniform time constant designs:
Another interesting special case in when the value of the high-frequency gain is not significant.
It that case, it is convenient to set the capacitors and associated resistors to specific values:

C1 D C2 D Cc R1 D R2 D Rc :

e pertinent filter parameters are then reduced to:

!o D
1

RcCc
; (9.64)

and

2� D 2 �R0=R: (9.65)

Notice that these parameters are unchanged from the low-pass case.is specific choice of resistor
and capacitor values separates the two main parameters of the filter stage. e resonant frequency,
!o, is controlled only by Rc and Cc : the damping coefficient is controlled only by the gain of the
individual stage.

Example 9.8
Design a 3rd order Butterworth high-pass filter with unity gain in the passband and a 3 dB fre-
quency of 2 kHz.

Solution:
ird order filters are comprised of a first-order stage followed by a second-order stage with

damping coefficient � D 0:5. e resonant frequency is given by:

!o D 2�f3dB D 12:5664 � 103:

e first order stage can be realized with element values (rounded to standard values):

R1.first/ D 7:96 k�C1.first/ D 0:01�F:

e second order stage requires a bit more effort. For simplicity, identical capacitors with the same
value as the first-order stage capacitor will be utilized:

C1.second/ D C2.second/ D 0:01�F:

Equation (9.63) then reduces to:

R2.second/ D 3:97 k�:
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Equation (9.62) yields the other resistor value:

R1.second/R2.second/ D 63:326 � 106 ) R2.second/ D 16:0 k�:

e final design is shown below:

o
v

_

+i
v

_

+

16.0 kΩ
7.96 kΩ

3.97 kΩ

0.01 µF0.01 µF0.01 µF

9.4.3 BAND-PASS ANDBAND-STOPOPAMPFILTERS
In many cases band-pass and band-stop filters can be achieved with the series or parallel con-
nection of high-pass and low-pass filters. ese filters are particularly useful if the passband or
stopband is relatively large.

e series connection of a low-pass filter with a high-pass filter will produce a band-pass
filter if there exists a region of common passband. e band-pass filter will extend from the low
edge of the high-pass filter passband to the high edge of the low-pass filter passband. is concept
is depicted in Figure 9.17.

Passband

0

0
2

|H(   )|

1

Overall

Low Passband

High Passband

 

ω

ω ω ω

Figure 9.17: Cascaded band-pass filter characteristic.

Similarly, the parallel connection of a low-pass filter and a high-pass filter will produce
a band-stop filter if there is a region of common stopband. e stopband will extend from the
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low edge of the low-pass filter stopband to the high edge of the high-pass filter stopband. is
concept is depicted in Figure 9.18

Stopband

0

0
2

|H(   )|

1

Overall

Low High

Passband Passband

 

ω

ω ω ω

Figure 9.18: Parallel band-stop filter characteristic.

Example 9.9
Design a Butterworth band-pass filter using a minimum number of OpAmps to meet the follow-
ing design goals:

Midband Region

low 3 dB frequency — 500Hz
high 3 dB frequency — 2.35 kHz
voltage gain — any value (AVo)

Stopband Region

f � 150Hz—jAV jdB � jAVojdB–50 dB
f � 10 kHz—jAV jdB � jAVojdB–50 dB

Verify if the design meets the design goals using SPICE.

Solution:
is filter can be constructed with the series connection of a low-pass filter and a high-pass

filter. Minimum number of OpAmps implies that the order of the filter should be kept as small as
possible while still meeting specifications. e absence of a midband gain requirement suggests
(but does not require) uniform time constant designs.

low-pass section:
e significant radian frequencies of interest are the 3 dB frequency and the edge of the

stopband frequency:

!olp D 2�.2350/ D 14:77 � 103 !s D 2�.10,000/ D 62:83 � 103
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50 dB attenuation translates into the magnitude of the Butterworth polynomial at the edge of the
stopband

jBn.!/j D 10.50=20/ D 316:23:

e order of this filter is found by solving Equation (9.26):

jBn .!/j D

s
1C

�
!s

!o

�2n
) 316:2 D

p
1C .4:255/2n

n D
log

�
316:22 � 1

�
2 log .4:255/

D 3:975:

A fourth order low-pass filter is necessary. e necessary damping coefficients are found in Ta-
ble 9.2:

�1 D 0:3827 �2 D 0:9239:

Uniform time constant design controls the damping coefficient with the amplifier gain:

R0=R D 2 � 2� D 1:2346; 0:1522:

If R is chosen arbitrarily as 10 k� then the two feedback resistors are:

R0
lp1 D 12:3 k� R0

lp2 D 1:52 k�:

e resonant frequency of the filter is chosen so that

!o D
1

Rc.lp/Cc.lp/
:

Two standard value components that will satisfy this relationship are:

Rc.lp/ D 1:74 k� Cc.lp/ D 0:039�F:

high-pass section:
e significant frequencies of interest are:

!ohp D 2�.500/ D 3:142 � 103 !s D 2�.150/ D 942:5:

It is found that a fifth order high-pass filter is needed:

n D
log

�
316:22 � 1

�
2 log .3:333/

D 4:781:

e damping coefficients are:

�1 D 0:3090 �2 D 0:8090:
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Which lead to resistor values:

R D 10 k� R0
hp1 D 13:8 k� R0

hp2 D 3:82 k�:

e other components are chosen to have the proper 3 dB frequency:

Rc.hp/ D 8:16 k� Cc.hp/ D 0:039�F:

e final design is a series connection of the two sections as shown below:

o
v

_

+

i
v

_

+

_

+

1.74 kΩ1.74 kΩ

8.16 kΩ

1.74 kΩ

10 kΩ 1.52 kΩ10 kΩ

10 kΩ 3.83 kΩ

10 kΩ

12.3 kΩ

1.74 kΩ

0.039 µF0.039 µF 0.039 µF0.039 µµF

10 kΩ

o
v

_

+

8.16 kΩ8.16 kΩ

0.039 µF0.039 µF

10 kΩ 13.8 kΩ

_

+

8.16 kΩ8.16 kΩ

0.039 µF0.039 µF

0.039 µF

e magnitude response plot is shown below. Notice each of the predicted design goals are very
close to theory. e midband gain is approximately the product of the passband gains of each
stage:

AVo D 20 logf.2/.2:38/.1:383/.2:23/.1:152/g D 20 log 16:91 D 24:56 dB:
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Each 3 dB frequency is exact to within a fraction of a Hz and the stopbands begin at the correct
frequencies. Notice the asymmetry of the response plot due to the different order filters in high-
pass and low-pass sections.

9.5 RESONANTBAND-PASS FILTERS

If the passband of a filter is relatively narrow compared to the center frequency, the series connec-
tion of high-pass and low-pass stages, as described in the last section, can become prohibitive in
terms of number of components and overall cost. An alternative configuration for narrow band-
pass filters utilizes the characteristics of an underdamped pole-pair in a system transfer charac-
teristic. When such a pole pair is coupled with a zero at the origin, the transfer characteristic
is:

H.!/ D

Ao
j!o

!o

1C 2�
j!o

!o
C

�
j!o

!o

�2 : (9.66)

e Bode magnitude plot of the transfer characteristic takes the form shown in Figure 9.19: a
band-pass characteristic that is centered at !o and that has a passband bandwidth dependent on
the complex pole pair damping coefficient, � . Since the characteristic of interest occurs at the
resonant frequency of the complex conjugate pole pair, the filter characteristic is considered a
resonant filter.
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Figure 9.19: Resonant bandpass magnitude characteristics.

e gain at the resonant frequency of the filter is a function of the damping coefficient and
is given by:

jH.!o/j D

ˇ̌̌̌
ˇ̌̌̌
ˇ

Ao
j!o

!o

1C 2�
j!o

!o
C

�
j!o

!o

�2
ˇ̌̌̌
ˇ̌̌̌
ˇ D

Ao

2�
: (9.67)

e two half-power frequencies, !H and !L are easily calculated:

!H D !o

�
� C

p
1C �2

�
and !L D

!o

� C
p
1C �2

: (9.68)

Subtracting the half-power frequencies yields the bandwidth of the filter passband:

BW D !H � !L D 2�!o: (9.69)

Typically, filter designers define the quality factor, Q, of the circuit as the resonant frequency of
the filter divided by the bandwidth:

Q D
!o

BW
D

!o

2 � !o
D

1

2 �
: (9.70)

High Q band-pass filters are easily constructed using circuits with low damping coefficient, �.
In the regions more than about one decade from the resonance, the slope of the filter response
is ˙20 dB/decade. Should greater slope be necessary in these regions, additional resonant filter
stages can be cascaded to achieve that requirement.
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9.5.1 RLC REALIZATION
ere exist a large number of possible circuit topology realizations for the resonant band-pass
filter characteristic of Equation (9.66). One such circuit topology is shown in Figure 9.20. is
circuit uses a series connection of an inductor, capacitor and resistor.

o
v

_

+

G
R

L

F
R

R
C

i
v

Figure 9.20: An active resonant band-pass filter.

e transfer characteristic is obtained through voltage division and the response of a non-inverting
amplifier:

H.j!/ D
R

RC j!LC 1=j!C
.1CRF =RG/

D
j!RC

1C j!RC C .j!/2LC
.1CRF =RG/ :

(9.71)

A comparison of terms to Equation (9.66) leads to expressions for the resonant frequency:

!o D
1

p
LC

(9.72)

and the damping coefficient

� D
R

2

r
C

L
: (9.73)

Another useful expression is that for the bandwidth:

BW D 2�!o D
R

L
: (9.74)

Unfortunately, in many cases, narrow band RLC realizations may require unreasonably large
inductor values.
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Example 9.10
Design a RLC resonant bandpass filter with the following design goals:

Center frequency, fo D 10 kHz
3 dB bandwidth, B D 400Hz:

Solution:
Choose L D 0:01H. e bandwidth specification leads to:

R D L � BW D 0:01.2� � 400/ D 25:1�:

e resonant frequency specification leads to:

C D
1

L!2o
D

1

0:01.2� � 10; 000/2
D 25:3 nF:
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(9.8085k, 16.9958dB) (10.2074k, 16.9960dB)

(10.0000k, 19.9957dB)

While not specified in the design goals, the gain of the filter at resonance is simply that of the
non-inverting amplifier. e output to a simulation of the filter response is shown above where the
midband gain was chosen to be 10 (20 dB). e filter correctly peaks at 10 kHz with a bandwidth
of 400Hz.

9.5.2 RC REALIZATION
It is also possible to implement the transfer characteristic of Equation (9.66) in a OpAmp circuit
containing only resistors and capacitors (Figure 9.21).
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Figure 9.21: An active resonant band-pass filter without an inductance.

e transfer characteristic of this circuit topology can be obtained through Kirchhoff ’s
current law applied at the negative input terminal of the OpAmp and at the node identified by
vA:

At the negative input terminal of the OpAmp:
vo

R3
C j!C2vA D 0 ) vA D

vo

j!R3C2
(9.75)

and at node vA
vi � vA

R1
�
vA

R2
C j!C1 .vo � vA/C

vo

R3
D 0: (9.76)

Combining Equations (9.75) and (9.76) yields the filter transfer characteristic:

H .j!/ D
vo

vi
D

�j!
RPR3C2

R1

1C j!RP .C1CC2/C .j!/2RPR3C1C2
: (9.77)

Where RP D R1==R2. From the form of H.j!/, one can then deduce:

!o D
1p

RpR3C1C2

2�

!o
D RP .C1CC2/ and Ao

!o
D
RPR3C2

R1
: (9.78)

e filter designer is in the enviable position of having five circuit variables and only three con-
straints: the filter gain, resonant frequency, and bandwidth. Since capacitor values are more con-
strained than resistor values, filter designers typically choose the two capacitor values and calculate
the three resistor values. If one further assumes the capacitors have equal value (C1 D C2 D C ),
the resistor values can be determined to be:

R3 D
1

C�!o
R1 D

R3

2 j H .!o/ j
and R2 D

�
C!o

�
�

1

R1

��1

: (9.79)
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Example 9.11
Design an RC resonant band-pass filter with the following design goals:

Midband voltage gain D 33 dB
Center frequency D 200Hz
3 dB bandwidth D 20Hz

Solution:
A necessary parameter that must be determined is the damping coefficient:

� D
BW

2!o
D

B

2fo
D

20

2 � 200
D 0:05:

Arbitrarily choose C D 0:1�F. Calculate the resistor values:

R3 D
1

C�!o
D

1

0:1 � 10�6 .0:05/ .2� � 200/
D 159 k�

R1 D
R3

2 jH .!o/j
D

159; 000

2 � 1033=20
D 1:78 k�

R2 D

�
C!o

�
�

1

R1

��1

D

�
0:1 � 10�6 � 2� � 200

0:05
�

1

1780

�
D 512 �:

e output to a simulation of the filter response is shown below. e filter appropriately peaks at
200Hz with a gain of 33 dB and a bandwidth of 20Hz.
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9.5.3 RESONANTBANDSTOPFILTERS
e filter designer is often faced with the task of eliminating a narrow band of frequencies while
retaining the remainder of the frequency spectrum. Designing a band-stop filter as the parallel
connection of a high-pass and a low-pass filter as described in Section 9.4.3 can similarly become
prohibitive in terms of number of components and overall cost when the required stop band is
narrow. While a number of OpAmp realizations for narrow band-stop (often called a “notch”)
filters exist, the circuit shown in Figure 9.22 is one that uses resonance characteristics.
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Figure 9.22: An active resonant band-stop filter.

e filter transfer relationship can be determined by solving the set of simultaneous equations
obtained by applying Kirchhoff ’s current law at the nodes identified with voltages vp; vn and vo
(note that vn D vp):

�
vi � vp

�
j!C1 C

0 � vp

R1
D 0

vi � vn

RN
C
va � vn

RA
D 0

.va � vo/ j!C2 C
vi � vo

R2
D 0:

(9.80)

e filter transfer relationship is determined to be:

H .!/ D

1C

�
C1R1 � C2R2

RF

RN

�
j! C .C1R1C2R2/ .j!/

2

1C .C1R1CC2R2/ j! C .C1R1C2R2/ .j!/
2

: (9.81)
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Both the numerator and denominator of H.!/ are resonant at:

!o D
1

p
R1C1R2C2

: (9.82)

However, the damping coefficients of the numerator, �N , and the denominator, �D , are different:

�N D

C1R1 � C2R2
RF

RN

2
p
R1C1R2C2

and �D D
C1R1 C C2R2

2
p
R1C1R2C2

: (9.83)

H.!/ has the characteristics that at frequencies much less than the resonant frequency and much
larger than the resonant frequency, jH.!/j D 1 and at the resonant frequency

jH .!o/j D

C1R1 � C2R2
RF

RN
C1R1CC2R2

D
�N

�D
: (9.84)

In theory, the notch in the filter can be made arbitrarily deep: in practice it is possible to obtain
as much as 60 dB of attenuation at the resonant frequency.

One typical design choice for this filter configuration sets R1 D R2 D R and C1 D C2 D

C , so that:
!o D

1

RC
; �N D 1 �

RF

RN
; and �D D 1: (9.85)

Example 9.12
Design a resonant band-stop filter with the following design goals:

Center frequency D 60Hz
Notch depth > 40 dB:

Solution:
Arbitrarily choose C1 D C2 D 0:1�F and R1 D R2 D R.
en

R D
1

!oC
D

1

2� .60/
�
0:1 � 10�6

� D 26:5 k�

jH .!o/j D 10
�40
20 D

�N

�D
) �N D 0:01

and
RF

RN
D 1 � � D 0:99:

Choose RN D 10 k� and RF D 9:88 k� (closest standard value).
e resultant SPICE simulation plot is shown below. All design goals are met.
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is resonant band-stop filter configuration has limitations that need to be noted. In partic-
ular, it is necessary that it be driven by a low-impedance source and that it drives a high-impedance
load. As such, buffer circuitry may be necessary in some circumstances to insure proper operation.

In addition, the width of the band for which attenuation is more than 3 dB, of this particular
band-stop filter is not adjustable and is fixed:

BW>3dB � 2!o .� 3=4 decade/: (9.86)

Performance similar to that obtained in Example 9.12, if obtained with a high-pass and a low-
pass filter connected in parallel while maintaining this same attenuation band, would require two
sixth-order filters. e savings in terms of number of components and overall cost is considerable.

e high-pass cutoff frequency, !hp, and the low-pass cutoff frequency !lp are approxi-
mately given by:

!hp �

�
1C

p
2
�
!o and !lp �

!o

1C
p
2
: (9.87)

More complex circuit configurations can avoid these limitations, but are beyond the scope of this
discussion.

9.6 CHEBYSHEVFILTERS
When filter design specifications allow for a small amount of ripple in either the passband or
the stopband, an all-pole filter called the Chebyshev filter can be used. Two types of Chebyshev
filters can be specified as shown in Figure 9.23: one containing ripple in the passband, classified
as type 1, and the other with the ripple in the stopband called type 2. e disadvantage of the
ripple in the filter response is counteracted by a steeper transition band for a given filter order.
at is, for a low-pass filter of a given order, the Chebyshev filter has a lower stopband frequency
than the Butterworth filter.
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Figure 9.23: (a) Chebyshev type 1 low-pass filter response; (b) Chebyshev type 2 low-pass filter re-
sponse.

In most electronic applications, the Chebyshev type 1 response, with ripple in the passband, is
the more common of the two types. e Chebyshev type 1 filter transfer function is,⁹ˇ̌̌̌

H .!/

Ho

ˇ̌̌̌2
D

1

1C "2C 2n

�
!
!c

� ; (9.88)

where
ˇ̌̌
H.!/
Ho

ˇ̌̌
, and Cn

�
!
!c

�
are the normalized magnitude o f the filter transfer function and the

Chebyshev polynomials defined from a recursive formula given in Table 9.3, respectively. e
parameter is related to the ripple defined in Equation (9.32):


max D

p
1C "2:

Table 9.3 is a tabulation of the first nine Chebyshev polynominals. It is evident that for x D 0, the
Chebyshev polynomial Cn.0/ is 1 when n is even, and zero when n is odd. e resulting response
is, ˇ̌̌̌

H .0/

Ho

ˇ̌̌̌2
D

8<: 1

1C "2
; n even

1; n odd
: (9.89)

e two general shapes of the Chebyshev type 1 low-pass filter for n odd and even are shown in
Figure 9.24. e squaredmagnitude frequency response oscillates between 1 and (1C "/�1 within
the passband and has a value of (1C "/�1 at the cutoff frequency !c . e response is monotonic
outside the passband. e stopband edge is defined by !s corresponding to a magnitude of A�2 .

⁹e Chebyshev type 2 filter transfer function is:
ˇ̌̌

H.!/
Ho

ˇ̌̌2
D

"2C 2
n.

!c
! /

1C"2C 2
n.

!c
! /

.
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Table 9.3: First nine Chebyshev polynomials

n ω

ω
C (x) , where  x =n

c

0 1 

1 x 

2 22 1x  

3 34 3x x  

4 4 28 8 1x x  

5 5 316 20 5x x x  

6 6 4 232 48 18 1x x x  

7 7 5 364 112 56 7x x x x

8 8 6 4 2128 256 160 32 1x x x x  

9 9 7 5 3256 1280 432 120 9x x x x x

0
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1 + 
2

(     )H
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ω ω

ω
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2

ω
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Figure 9.24: (a) Frequency Response of odd order Chebyshev type 1 filter; (b) Frequency Response
of even order Chebyshev type 1 filter.

e roots of 1C "2C 2n

�
!
!c

�
in the denominator of the Chebyshev type 1 transfer function (the

poles) lie on an ellipse on the complex plane as shown in Figure 9.25. For simplicity, let !r D

!=!c . e amount of ripple in the response is related to the eccentricity of the ellipse.
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Figure 9.25: Poles of a low-pass Chebyshev type 1 filter.

Using the LHP poles only, the transfer function can be written as,

H .!r/

Ho
D

K
nQ
kD1

Œ.j!r � sk/�

D
K

Vn .j!r/
; (9.90)

where sk are the pole locations,

Vn .j!r/ D .j!r/
n

C bn�1.j!r/
n�1

C : : :C b1 .j!r/C b0:

Here K is a normalizing constant that makes

H .0/

Ho
D

8<:
1

p
1C "2

; n even

1; n odd
:

e normalizing constant is therefore,

K D Vn.0/ D b0; n odd

K D
Vn .0/

p
1C "2

; n even:

Table 9.4 provides the normalized polynomials for Chebyshev type 1 filters for orders n D 1 to 9
and " corresponding to 0.5, 1, 2, and 3 dB ripples in the passband.

e required order of a Chebyshev type 1 low-pass filter depends on the following factors:

• Cutoff frequency

• Stopband frequency

• Stopband attenuation
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• Passband ripple

Design specifications usually provide the requiredminimum attenuation desired at a certain
stopband frequency instead of an exact attenuation. e required order of the filter, n, is found
by applying Equation (9.91):

n D

log
h
g C

p
g2 � 1

i
log

h
!r C

p
!r 2 � 1

i ; (9.91)

where

A D

ˇ̌̌̌
Ho

H .!r/

ˇ̌̌̌
; (9.92)

and

g D

r
A2 � 1

"2
: (9.93)

Example 9.13
Find the transfer function for a low-pass filter with the following specifications:

1. Cutoff frequency fc D 1000Hz.

2. Acceptable passband ripple of 2 dB.

3. Stopband attenuation of � 20 dB beyond 1300Hz.

Solution:
e specifications imply the following relationships:

20log
ˇ̌̌̌
H .2� � 1k/

Ho

ˇ̌̌̌
D 20log

�
1

p
1C"2

�
D �2 dB

and

20log
ˇ̌̌̌
H .2� � 1:3k/

Ho

ˇ̌̌̌
D 20log

�
1

p
A2

�
D �20 dB:

e solutions to the two relationships above are: " D 0:7648 and A D 10. e relative stopband
frequency is 1:3 k=1 k D 1:3.

e required order of the Chebyshev type 1 low-pass filter is found by using Equations
(9.91)–(9.93),

g D

r
A2 � 1

"2
D 13:01;
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and

n D

2666 log
h
13:01C

p
13:012 � 1

i
log

h
1:3C

p
1:3 � 1

i 3777 D d4:3e D 5:

Table 9.4: Normalized Chebyshev polynomials (Continues.)

n 0.5 dB ripple ( 0.3493)

n 1.0 dB ripple ( 0.5089)

1 j + 2.863 

2 (j )2 +1.426(j )+1.516 

3 [(j )+0.626]{[(j )+0.313]2+1.0222} 

4 {[(j )+0.175]2+1.0162}{[(j )+0.423]2+0.4212} 

5 [(j )+0.362]{[(j )+0.112]2+1.0122}{[(j )+0.293]2+0.6252}

6 {[(j )+0.078]2+1.0092}{[(j )+0.212]2+0.7382}{[(j )+0.290]2+0.2702} 

7 [(j )+0.256]{[(j )+0.057]2+1.0062}{[(j )+0.160]2+0.8072}{[(j )+0.231]2+0.4482} 

8 {[(j )+0.044]2+1.0052}{[(j )+0.124]2+0.8522}{[(j )+0.186]2+0.5692}{[(j )+0.219]2+0.2002} 

9 [(j )+0.198]{[(j )+0.034]2+1.0042}{[(j )+0.099]2+0.8832}{[(j )+0.152]2+0.6552}{[(j )+0.186]2+0.3492} 

1 j + 1.962 

2 (j )2 +1.098(j )+1.103 

3 [(j )+0.494]{[(j )+0.247]2+0.9662} 

4 {[(j )+0.140]2+0.9832}{[(j )+0.337]2+0.4072} 

5 [(j )+0.289]{[(j )+0.090]2+0.9902}{[(j )+0.234]2+0.6122}

6 {[(j )+0.062]2+0.9932}{[(j )+0.170]2+0.7272}{[(j )+0.232]2+0.2662} 

7 [(j )+0.205]{[(j )+0.046]2+0.9952}{[(j )+0.128]2+0.7982}{[(j )+0.185]2+0.4432} 

8 {[(j )+0.035]2+0.9972}{[(j )+0.100]2+0.8452}{[(j )+0.149]2+0.5642}{[(j )+0.176]2+0.1982} 

9 [(j )+0.159]{[(j )+0.028]2+0.9972}{[(j )+0.080]2+0.8772}{[(j )+0.122]2+0.6512}{[(j )+0.150]2+0.3462} 

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω ω ω ω ω

ω ω ω

ω ω ω

ω ω

ω ω

ω

ω

ω

ω ω ω ω ω

ω ω ω

ω ω ω

ω ω

ω

ω

ω ω

ω ω

ω ω ω

ω

ε =

ε =



9.6. CHEBYSHEVFILTERS 703
Table 9.5: (Continued.) Normalized Chebyshev polynomials

n 2.0 dB ripple ( 0.7648)

n 3.0 dB ripple ( 0.9953)

1 j + 1.308 

2 (j )2 +0.804(j )+0.637 

3 [(j )+0.369]{[(j )+0.184]2+0.9232} 

4 {[(j )+0.105]2+0.9582}{[(j )+0.253]2+0.3972} 

5 [(j )+0.218]{[(j )+0.068]2+0.9742}{[(j )+0.177]2+0.6022}

6 {[(j )+0.047]2+0.9822}{[(j )+0.128]2+0.7192}{[(j )+0.175]2+0.2632} 

7 [(j )+0.155]{[(j )+0.035]2+0.9872}{[(j )+0.097]2+0.7912}{[(j )+0.140]2+0.4402} 

8 {[(j )+0.027]2+0.9902}{[(j )+0.075]2+0.8392}{[(j )+0.113]2+0.5612}{[(j )+0.133]2+0.1972} 

9 [(j )+0.121]{[(j )+0.021]2+0.9922}{[(j )+0.060]2+0.8722}{[(j )+0.092]2+0.6472}{[(j )+0.113]2+0.3452} 

1 j + 1.002 

2 (j )2 +0.645(j )+0.708 

3 [(j )+0.299]{[(j )+0.149]2+0.9042} 

4 {[(j )+0.085]2+0.9472}{[(j )+0.206]2+0.3922} 

5 [(j )+0.178]{[(j )+0.055]2+0.9662}{[(j )+0.144]2+0.5972}

6 {[(j )+0.038]2+0.9762}{[(j )+0.104]2+0.7152}{[(j )+0.143]2+0.2622} 

7 [(j )+0.127]{[(j )+0.028]2+0.9832}{[(j )+0.079]2+0.7882}{[(j )+0.114]2+0.4372} 

8 {[(j )+0.022]2+0.9872}{[(j )+0.062]2+0.8372}{[(j )+0.092]2+0.5592}{[(j )+0.109]2+0.1962} 

9 [(j )+0.098]{[(j )+0.017]2+0.9902}{[(j )+0.049]2+0.8702}{[(j )+0.075]2+0.6462}{[(j )+0.092]2+0.3442} 

ω ω

ω ω

ω ω ω

ω

ω

ω

ω

ω ω

ω ω

ω

ω ω ω

ωωωω

ω ω ω ω

ωωωωω

ω ω

ω ω ω ω

ω ωω

ωωωω

ω ω ω ω

ω ω

ω

ε =

ε =

e partial bracket,
˙ �

, is a symbol for the operation to round up to the next integer.
Using Table 9.4 for n D 5 and 2 dB ripple, the transfer function is,

H

�
!

!c

�
Ho

D
1��

j
!

!c

�
C0:218

�(��
j
!

!c

�
C0:068

�2
C0:9742

)(��
j
!

!c

�
C0:177

�2
C0:6022

)
D

1�
j!

0:218!c
C 1

�"
.j!/2

0:953!2c
C
0:136 .j!/

0:953!c
C 1

#"
.j!/2

0:394!2c
C
0:354 .j!/

0:394!c
C 1

# :

e response of the fifth order low-pass filter transfer function in this example is shown below.
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High-Pass Characterization:
High-pass Chebyshev filters are characterized by using the analog-to-analog transformation. e
Chebyshev low-pass to high-pass transformation, like the Butterworth low-pass to high-pass
analog-to-analog transformation, has the effect of adding two zero-frequency zeroes to the trans-
fer function. e generic procedure for the analog-to-analog transformation from low to high-
pass shown in Figure 9.26 is not restricted to Chebyshev filters, but may be used for other filter
types.
e general procedure to find the transfer function of a high-pass filter is as follows:

1. Perform a backward transformation using the high-pass filter specifications for the cutoff
frequency, !c , and the stopband frequency, !s , which is associated with some level of at-
tenuation. e backward transformation of frequencies yields the normalized low-pass ratio
of stopband to cutoff frequency, !r .

2. Use the normalized low-pass ratio of stopband to cutoff frequency, !r , to find the order of
the filter.

3. Use Table 9.4 to find the transfer function of the normalized low-pass filter.

4. Perform a forward transformation on the transfer function by replacing all (j!) with !c

j!
.
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Figure 9.26: Analog-to-analog transformation: low-pass to high-pass.
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Example 9.14
Find the transfer function for a high-pass filter with the following specifications:

1. Cutoff frequency fc D 1000Hz.

2. Acceptable passband ripple of 2 dB.

3. Stopband attenuation of � 20 dB below 500Hz.

Solution:
e high-pass to low-pass transformation procedure yields,

!r D
!c

!s
D
2� .1000/

2� .500/
D 2:

e specifications imply the following relationships:

20log
ˇ̌̌̌
H .2� � 1k/

Ho

ˇ̌̌̌
D 20log

�
1

p
1C"2

�
D �2 dB;

and
20log

ˇ̌̌̌
H .2� � 500/

Ho

ˇ̌̌̌
D 20log

�
1

p
A2

�
D �20 dB:

e solutions to the two relationships above are: " D 0:7648 and A D 10 .
e required order of the Chebyshev type 1 low-pass filter is found by using Equa-

tions (9.91)–(9.93),

g D

r
A2 � 1

"2
D

s
102 � 1

0:76482
D 13:01;

and

n D

2666 log
h
13:01C

p
13:012 � 1

i
log

h
2C

p
2 � 1

i 3777 D d2:96e D 3:

Using Table 9.4 for n D 3 and 2 dB ripple, the transfer function is,

H

�
!

!c

�
Ho

D
1��

j
!

!c

�
C0:299

�(��
j
!

!c

�
C0:149

�2
C0:9042

)
D

1��
j
!

!c

�
C0:299

�"�
j
!

!c

�2
C 0:298

�
j
!

!c

�
C 0:839

# :
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Perform a forward transformation to yield the high-pass filter transfer function:

H .!/

Ho

ˇ̌̌̌
j!!

!c

j!

D
1��

!c

j!

�
C0:299

�"�
!c

j!

�2
C 0:298

�
!c

j!

�
C 0:839

# :
e normalized high-pass filter function is:

H

�
!

!c

�
Ho

ˇ̌̌̌
ˇ̌̌̌
j!!

!c
j!

D

�
j!

!c

�3
�
1C0:299

�
j!

!c

��"
1C 0:298

�
j!

!c

�
C 0:839

�
j!

!c

�2# :
e response of the third order high-pass filter transfer function in this example is shown below.

0.0 1 0.1 1 100.01

0.1

1

10

│H (ω)│

ω

ω
c

9.6.1 OPAMPREALIZATIONOFCHEBYSHEVFILTERS
Since the Chebyshev type 1 low-pass filter is an all-pole filter, the OpAmp circuit implementation
is identical to the Butterworth filter circuit configurations. Both the unity gain and Sallen and
Key configurations can be used to implement Chebyshev type 1 filters.

Low-Pass OpAmp Filters
Although the OpAmp circuit configurations for the Chebyshev Type 1 and the Butterworth low-
pass filters are identical, the calculations for the components of the circuit components differ.
e calculations for the first order low-pass stages of Chebyshev Type 1 and Butterworth filters
is identical. However, the calculation of the component values for the Chebyshev Type 1 trans-
fer function of second order low-pass stages requires some modification from the Butterworth
calculations.
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ese modifications for calculating second order stages of Chebyshev Type 1 low-pass fil-
ters are as follows. If

H

�
!

!c

�
D

nY
iD1

1"
.j!/2

ai!2c
C
bi .j!/

ai!c
C 1

# ; (9.94)

then the “relative” resonant frequency for the two second order stages are:

!oi D
p
ai!c : (9.95)

e damping coefficient is,

.2�i / D
bi

p
ai
: (9.96)

en Equation 9.44 is replaced by,

!oi D
1

p
R1R2C1C2

: (9.97)

Using the uniform time constant form of the Sallen and Key second-order stage where R1 D R2
and C1 D C2, the gain can be expressed as,

AV i D 3 � .2�i / : (9.98)

Example 9.15
Design a low-pass filter with the following specifications:

1. Cutoff frequency fc D 1000Hz.

2. Acceptable passband ripple of 3 dB.

3. Stopband attenuation of � 20 dB above 1400Hz.

Implement the filter transfer function with the Sallen and Key configuration.

Solution:
e specifications imply the following relationships:

20log
ˇ̌̌̌
H .2� � 1k/

Ho

ˇ̌̌̌
D 20log

�
1

p
1C"2

�
D �3 dB

and

20log
ˇ̌̌̌
H .2� � 1400/

Ho

ˇ̌̌̌
D 20log

�
1

p
A2

�
D �20 dB:
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e solutions to the two relationships above are: " D 1 and A D 10.
e required order of the Chebyshev type 1 low-pass filter is found by using Equa-

tions (9.91)–(9.93),

g D

r
A2 � 1

"2
D

s
102 � 1

12
D 9:95;

and

n D

2666 log
h
9:95C

p
9:952 � 1

i
log

h
1:4C

p
1:42�1

i 3777 D d3:45e D 4:

Using Table 9.4 for n D 4 and 3 dB ripple, the transfer function is,

H

�
!

!c

�
Ho

D
1(��

j
!

!c

�
C0:085

�2
C0:9472

)(��
j
!

!c

�
C0:206

�2
C0:3922

)
D

1"�
j
!

!c

�2
C 0:170

�
j
!

!c

�
C 0:904

#"�
j
!

!c

�2
C 0:412

�
j
!

!c

�
C 0:196

#
D

5:644"
.j!/2

0:904!2c
C
0:170j!

0:904!c
C 1

#"
.j!/2

0:196!2c
C
0:412j!

0:196!c
C 1

#
e “relative” resonant frequencies for the two second order stages are:

!o1 D
p
0:904!c D .0:951/ .2�/ .1k/ D 5:98 krad=s;

and

!o2 D
p
0:196!c D .0:443/ .2�/ .1k/ D 2:78 krad=s:

e damping coefficients are:

2�1 D
0:170

p
0:904

D 0:179

and

2�2 D
0:412

p
0:196

D 0:931:
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Let the capacitors be equal andC D 0:1�F. Let the frequency controlling resistances within each
stage be identical. en, the frequency controlling resistors for the two stages are:

R1 D
1

!01C
D

1

5:98k .0:1�/
D 3:6 k�;

and

R2 D
1

!02C
D

1

2:78 k .0:1�/
� 1:6 k� (standard value).

e gain for the two stages are:

Av1 D 3 � .2�1/ D 2:82; and Av2 D 3 � .2�1/ D 2:07:

If R0
gain1 D R0

gain2 D 10 k�, then Rgain1 � 18 k� and Rgain2 � 10 k�.
e completed fourth-order Chebyshev filter design is shown below.
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0.1 µF

0.1 µF

High-Pass OpAmp Filters
Unlike Butterworth filters, the Chebyshev high-pass OpAmp filter is not arrived at by simple
interchanges of the frequency controlling resistances and capacitances. As shown in Section 9.6.1,
the transfer function of the Chebyshev high-pass filter is found by performing analog-to-analog
transformations. e high-pass transfer function is then implemented by a circuit using the same
techniques outlined for the Chebyshev low-pass filter.

Example 9.16
Design a high-pass filter with the following specifications:

1. Cutoff frequency fc D 1000Hz.

2. Acceptable passband ripple of 3 dB.
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Figure 9.27: SPICE frequency response for Example 9.15.

3. Stopband attenuation of � 20 dB below 600Hz.

Implement the filter transfer function with the Sallen and Key configuration.

Solution:
e specifications imply the following relationships:

20log
ˇ̌̌̌
H .2� � 1k/

Ho

ˇ̌̌̌
D 20log

�
1

p
1C"2

�
D �3 dB

and

20log
ˇ̌̌̌
H .2� � 600/

Ho

ˇ̌̌̌
D 20log

�
1

p
A2

�
D �20 dB:

e solutions to the two relationships above are: " D 1 and A D 10.

An analog-to-analog transformation is performed to determine the transformed normal-
ized LOW-PASS characteristics. e backward transformation from high to low-pass yields,

!r D
!c

!s
D
2� .1000/

2� .600/
D 1:67:
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e required order of the normalized Chebyshev type 1 low-pass filter is found by using Equa-
tions (9.91)–(9.93),

g D

r
A2 � 1

"2
D

s
102 � 1

12
D 9:95;

and

n D

2666 log
h
9:95C

p
9:952 � 1

i
log

h
1:67C

p
1:67 � 1

i 3777 D d3:27e D 4:

Using Table 9.4 for n D 4 and 3 dB ripple, the transfer function is,

H .!/

Ho
D

1n
Œ.j!/C0:085�2C0:9472

o n
Œ.j!/C0:206�2C0:3922

o
D

1h
.j!/2 C 0:170 .j!/C 0:904

i h
.j!/2 C 0:412 .j!/C 0:196

i :
Another analog-to-analog transformation is performed to yield the normalized HIGH-PASS
transfer function by replacing j! with !c

j!
.

H .!/

Ho
D

1"�
!c

j!

�2
C 0:170

�
!c

j!

�
C 0:904

#"�
!c

j!

�2
C 0:412

�
!c

j!

�
C 0:196

#

D

�
j!

!c

�2
"
1C 0:170

�
j!

!c

�
C 0:904

�
j!

!c

�2#"
1C 0:412

�
j!

!c

�
C 0:196

�
j!

!c

�2#

D

�
j!

!c

�2
2641C

0:188

1

0:904

�
j!

!c

�
C

1

1

0:904

�
j!

!c

�2375
2641C

2:112

1

0:196

�
j!

!c

�
C

1

1

0:196

�
j!

!c

�2375
:

e “relative” resonant frequencies for the two second order stages are:

!o1 D

r
1

0:904
!c D .1:052/ .2�/ .1k/ D 6:61 krad=s
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and

!o2 D

r
1

0:196
!c D .2:259/ .2�/ .1k/ D 14:18 krad=s:

e damping coefficients are:

2�1 D
0:188q

1
0:904

D 0:179 and �2 D
2:112q

1
0:196

D 0:935:

Note that the damping coefficients are identical (except for round-off error) to that of the fourth
order low-pass example in Example 9.15

Let the capacitors be equal and C D 0:1�F. Let the frequency controlling resistances
within each stage be identical. en, the frequency controlling resistors for the two stages are:

R1 D
1

!01C
D

1

6:61 k .0:1�/
� 1:5 k�;

and

R2 D
1

!02C
D

1

14:18 k .0:1�/
� 680 � (standard value).

e gain for the two stages are:

Av1 D 3 � .2�1/ D 2:82 and Av2 D 3 � .2�1/ D 2:07:

IfR0
gain1 D R0

gain2 D 10 k�, thenRgain1 � 18 k� andRgain2 � 10 k�: the gain resistors are iden-
tical to the fourth order low-pass example in Example 9.15.
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Figure 9.28: High-pass Chebyshev filter of Example 9.16.

9.7 COMPARISONOFFILTERTYPES
e Butterworth and Chebyshev filter types have been discussed in the previous section. e
three filter types offer different performance characteristics that may be used to fulfill design
specifications. To simplify the choice of filter used to fulfill a certain specification, several key
characteristics are compared:

1. Cut-off frequency

e Butterworth filter passband is typically defined by the cut-off frequency which is the
half power point in the frequency response.However, in Chebyshev filters the passband, and
therefore, the so-called cut-off frequency, is defined by the frequency that identifies the end
of the ripple. ese two frequencies are different unless " D 1. erefore, it is important to
keep separate the definitions of cut-off frequency and half-power points for different filter
types.

2. Ripple

e Butterworth filter has a maximally flat response which results in a ripple-free passband
and stopband. Chebyshev filters exhibit ripple in either the passband or the stopband for
Chebyshev type 1 or type 2 filters; that is, passband ripple corresponds to type 1 filters
and stopband ripple corresponds to type 2 filters. In the Chebyshev response, the ripple is
dependent on the factor ".

3. DC response for a low-pass filter
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In the Butterworth filter, the response is peaked at DC.However, in the Chebyshev designs,
the DC filter response may be either peaked or at the power level of the response at the cut-
off frequency: that is, the DC response is peaked for odd order filters, and corresponds to
the cut-off frequency power level for even order filters.

4. Transition band
One of the most important filter specifications is the steepness of the transition band.
Steeper transitions from the passband to stopband requires the use of higher order filters:
higher order filters requiremore electronic components to implement. Fortunately, the three
filter types discussed in the previous section have varying transition band steepness given
an identical filter order. e Butterworth filter is the least steep in the transition band.

For example, for a n D 5 filter (with " D 1), the Chebyshev response has 24 dB greater
attenuation than the Butterworth response.

9.8 SWITCHED-CAPACITORFILTERS
UsingMOSFETS as switches, switched-capacitor (SC) filters can be designed in precisionmono-
lithic integrated circuits, and is widely used in digital signal procession applications.e advantage
of using MOSFET SC filters is derived from the simple fact that it is difficult to manufacture
precision resistors in integrated circuits. OpAmps and capacitors are more easily fabricated. Al-
though accurate values of capacitances may be difficult to achieve, precise ratios of capacitances
can easily be achieved in integrated circuits.

e key features of SC filters are:

• e filter can be fabricated in a precision monolithic integrated circuit.

• Since MOS technology allows high component density in integrated circuits, a single chip
can be fabricated to fulfill both analog and digital signal processing.

• MOS devices have very low power dissipation and temperature coefficients.

• Precise capacitance ratios can be fabricated. is is particularly important since active filters
depend largely on RC time constants: the time constant can be controlled by capacitance
ratios.

• Because resistors are eliminated, power consumption is reduced.

9.8.1 MOS SWITCH
e FET as an analog switch was discussed in Section 4.5 (Book 1). Ideal enhancement type
NMOSFET switch has the following design goals:

• In the ON state (VGS > VT ), it passes signal from the drain to source without attenuation.
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• In the OFF state (VGS < VT ), the signal is not passed from the drain to source.

• Transitions between the ON and OFF states is instantaneous.
Real NMOSFET switches have the following characteristics:

• In the ON state (VGS > VT ), the drain-source resistance, rD , is in the order of kilo-ohms
(< 10 k�).¹⁰

• In the OFF state (VGS < VT ), the drain-source resistance, rD , is in the order of several
hundred mega-ohms (100M�–1000M�).
e ratio of the resistance values between the ON and OFF states of an enhancement

NMOSFET is in the order or 105 or 100 dB. An equivalent representation of the characteristic
of enhancement NMOSFET switches is shown in Figure 9.29.

G

D S

Condition Switch State Equivalent Resistor Switch Model

ON

OFF

10 kΩ

100MΩ

V
GS 

> V 
T

V
GS 

< V 
T

Enhancement NMOSFET Symbol

Figure 9.29: Circuit and switch representation of enhancement NMOSFET.

A voltage signal is applied to the gate-source junction with fast rise and fall times and with
a peak amplitude greater than VT . Since the gate-source voltage is now a time varying signal, it is
represented as vgs or more commonly as a pulse train signal �. e NMOSFET switch is open or
closed depending on the value of �. is type of switch is known as the single-pole single-throw
(SPST) switch.

e clock signal, �, which is a pulse train signal, is usually generated by an external digital
system. e pulse train is periodic with a period of TC with a clock frequency of f D 1=TC . e
clock signal is used to turn the NMOSFET ON or OFF.

A two phase clock is shown in Figure 9.30. e two clock signals, �1 and �2, have the
same clock frequency but is out of phase; that is, when �1 is ON, �2 is OFF. e duty cycle
(percentage of time ON to the period of the signal) is commonly slightly less than 50% to insure
non-overlapping clocks.
¹⁰e comparatively large ON resistance of these switches is due to on-chip geometries that are not present in discrete FET
switches as described in 4 (Book 1).
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Figure 9.30: Biphase non-overlapping clocks.

For two NMOSFET switches in series in a “T” arrangement with a capacitor forms an
SC circuit, shown in Figure 9.31a, with each FET with M1 driven by �1 and M2 by �2, one of
the two FETs will always be ON. Simplified equivalent diagrams of the SC circuit are shown
in Figure 9.31b and c. Figure 9.31b is derived by directly replacing the NMOSFETs with SPST
switch representations, while Figure 9.31c is the functional equivalent diagram of the SC circuit.
With biphase clock signal inputs �1 and �2 to FETs M1 and M2, respectively, it is evident that
there will never be a direct connection between v1 and v2, as shown in Figure 9.31c. e term
“switched capacitor” derives from the switching operation of the FETs on the capacitor.

For a time varying input voltage, v1.t/ , with switch S1 closed and S2 open, the equivalent
circuit is that shown in Figure 9.32. If v1.t/ is a constant voltage, the voltage across the capacitor,
C , will increase with the time constant � D RON1C , where RON1 is the ON resistance of the
NMOSFETM1. For typical capacitance of C D 1 pF and RON1 D 10 k�, the voltage across the
capacitor will reach 63% of the input voltage when � D RON1C D 10 ns.

For the switched capacitor filter to operate properly, the time constant formed by RON1C

must be significantly small compared to the variations in the input voltage signal. If the switch
position is changed from 1 to 2, the charge on the capacitor will discharge at the output, v2. e
charge transferred is,

Q D C .v1 � v2/ ; (9.99)

over a discharge time, TC . e average current through the capacitor during this discharging
period in time is,

i .t/ D
dQ

dt
D
�Q

�t
�
C .v1 � v2/

TC
: (9.100)
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Figure 9.31: (a) NMOSFET switched capacitor, (b) FETs replaced by SPST switches, (c) simplified
functional circuit representation.
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Figure 9.32: (a) Switched capacitor with node 1 closed, (b) Equivalent circuit with FET ON resis-
tance shown.
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e equivalent resistor formed by the switched capacitor to yield the same value of current is:

REQ D
v1 � v2

i.t/
D
TC

C
D

1

fcC
; (9.101)

since i.t/ D
v1�v2

REQ
the approximate equivalent circuit for the switched capacitor of Figure 9.31a

is Figure 9.33.

_

v
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EQ

+

v
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+

_

Figure 9.33: Approximate equivalent circuit for a switched capacitor.

Consider the range of values of REQ. Using C D 1 pF (requiring a silicon area on the chip of ap-
proximately 0.01mm2) and a typical switching frequency of the NMOSFETs of fc D 100 kHz,
REQ is found to be 10M�. For the switched capacitor network to be useful, the switching fre-
quency, fC , must be much larger than the signal frequencies of interest in v1.t/ and v2.t/.

9.8.2 SIMPLE INTEGRATOR
e switched capacitor networks are used to implement active circuits for a variety of analog
operations. A simple integrator shown in Figure 9.34a is described by the transfer function,

vo .!/

vi .!/
D �

1

j!RCf
: (9.102)

e resistance in the integrator of Figure 9.34a can be replaced with a switched capacitor to obtain
Figure 9.34b. e integrator transfer function can be rewritten using Equation (9.101),

vo .!/

vi .!/
D �

fCC1

j!Cf
: (9.103)

e transfer function of the switched capacitor implementation of the active integrator
clearly shows a dependence on the clock frequency of the NMOSFET input signals and the ra-
tio of the two capacitors. Since MOS integrated circuit technology can hold tight tolerances on
capacitance ratios, precision integrators may be fabricated using the switched capacitor imple-
mentation.
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Figure 9.34: (a) Simple active RC integrator, (b) Switched capacitor implementation of (a).

9.8.3 GAIN STAGE
A switched capacitor inverting amplifier arrangement is shown in Figure 9.35a with two switched
capacitor filter networks, each equivalent to a resistance. e gain of the circuit is,

AV D
vo

vi
D �

C2

C1
: (9.104)

In Figure 9.35a, the capacitorC1 is charged to input signal level for �1 D V� andC2 is discharged.
When �1 D 0 then the voltage across C1 is applied to the OpAmp and C2 becomes the feedback
path.

A direct replacement of the resistors in the inverting OpAmp amplifier configuration with
switched capacitors yields the circuit shown in Figure 9.35b. is circuit is unworkable since
the switches used to form the feedback resistance is never closed simultaneously. erefore, the
feedback path from the output to the input of the OpAmp is only periodically closed and the
OpAmp will saturate.
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Figure 9.35: (a) Practical switched capacitor inverting amplifier, (b) Unworkable switched capacitor
inverting amplifier.
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9.8.4 LOW-PASS FILTERS
A switched capacitor active low-pass filter is shown in Figure 9.36. e NMOSFETsM1 andM2

and the capacitor C1 form the equivalent resistance, REQ, such that the transfer function of this
circuit is,

vo .!/

vi .!/
D

1

REQC2

0BB@ 1

j! C
1

REQC2

1CCA D
fCC1

C2

0BB@ 1

j! C
fCC1

C2

1CCA : (9.105)

o
v

_

+

1
C

1
M

1
Ø

2
Ø

i
v

2
C

2
M

Figure 9.36: First-order low-pass filter.

rough careful switched capacitor network arrangements, second order switched capaci-
tor filter circuit can be implemented. Figure 9.37 shows a Sallen and Key second order all-pole
low-pass filter and its switched capacitor equivalent. Note that resistorsR2 andR3 are in the feed-
back path and the switched capacitor implementation replaces these resistors with the alternate
switched capacitor network of a NMOSFET in parallel with the switched capacitor.

9.9 OPAMPLIMITATIONS
us, far, designs using OpAmps have assumed that the OpAmp has very large open-loop gain
(A � 200 k) over all frequencies. Filter designs have used this assumption by ignoring potential
frequency effects of OpAmps in their design. In reality, OpAmps themselves have a frequency
response: the frequency response is dependent on the closed loop gain of the amplifier. erefore,
the OpAmp may itself limit the operational frequency range of the application.

When a large step input voltage is applied to an OpAmp, the output waveform rises with
a finite slope called the slew rate. e slewing behavior of the output is due to amplifier non-
linearities. erefore, the slew rate cannot be calculated from the frequency response of the
OpAmp using linear analysis. e inability of the OpAmp output to rise in voltage as quickly
as linear theory predicts will also limit the frequency range of the amplifier.
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Figure 9.37: (a) Sallen and key second order low-pass filter section, (b) Switched capacitor imple-
mentation.
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9.9.1 FREQUENCYRESPONSEOFOPAMPS
Returning to the definition of the OpAmp output voltage presented in Equation 1.2 (Book 1), a
frequency dependent gain is used,

vo D A .j!/ Œv2 � v1� D A .j!/ vi ; (9.106)

where
A.j!/ is the frequency dependent large signal gain
v2 is the non-inverting input voltage
v1 is the inverting input voltage
vo is the output voltage, and
vi is the voltage applied between the input terminals of the OpAmp.

For a �A741, the gain characteristics are shown in Figure 9.38. e �A741 is an internally
compensated OpAmp, meaning that a capacitor is fabricated on the chip to for stability resulting
in a low-frequency pole in the transfer function.
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Figure 9.38: OpAmp open loop gain characteristics.

e curve shows an open loop gain of between 100 and 120 dB at DC. en at the OpAmp
corner frequency, fca D 5Hz, the gain falls off at �20 dB/decade, reaching 0 dB at 1MHz. e
product of the gain with the bandwidth is constant and is defined as the Gain Bandwidth Product
(GBP). e GBP of the �A741 is 106. e open loop gain, A.j!/, of this curve is,

A .j!/ D
Ao

1C
j!

!ca

D
Ao!ca

j! C !ca
D

GBP

j! C !ca
; (9.107)
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where Ao is the open loop gain at DC,

!ca D 2�fca

and
(9.108)

GBP D Ao!ca:

Referring to Figure 9.39, the GBP is confirmed as being constant, where the bandwidth is defined
by the corner frequency (fc) and the closed loop gain as Av.
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Figure 9.39: Closed loop gain characteristics.

e output voltage, vo, of an inverting OpAmp amplifier shown in Figure 9.40 is,

vo D A .j!/ va; (9.109)

where va is the input to the OpAmp.
e input voltage to the OpAmp is,

va D

�
vo � vi

Rs CRf

�
Rs C vi : (9.110)

Combining Equations (9.109) and (9.110), and knowing thatRf =Rs D K, the gain of the circuit
is,

AV D
vo

vi
D �K

A.j!/=.1CK/

1C A.j!/=.1CK/
: (9.111)

Let A.j!/ D GBP=j! then the voltage gain in Equation (9.111) becomes,

AV D
vo

vi
D �K

GBP=.1CK/

j! CGBP=.1CK/
: (9.112)
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Figure 9.40: Inverting OpAmp amplifier.

Equation (9.112) is a transfer function of the inverting OpAmp amplifier taking into account the
frequency response of the OpAmp. It is of the form of a single-pole transfer function with 3 dB
frequency:

!3 dB D
GBP

1CK
: (9.113)

9.9.2 OPAMP SLEWRATE
Time domain responses of OpAmp circuits require a introduction to a characteristic that is im-
portant in the specification of OpAmps. e most important of these is the slew rate. Because
OpAmps have responses that are frequency dependent, the output due to a step input is not a
perfect step, causing the output to be distorted.

When a step function, shown in Figure 9.41a, is applied to a unity gain follower OpAmp
circuit, the resulting output is that similar to Figure 9.41b. e output voltage is in the form of a
low-pass filter,

AV .!/ D
vo .!/

vi .!/
D

1

1C
j!
!t

; (9.114)

where
vo.!/ is the output voltage
vi .!/ is the input voltage
!t is the unity gain bandwidth.

e step response of the circuit is an exponentially rising waveform,

vo.t/ D V1.1 � e�!t t / D V1

�
1 � e�t=�

�
: (9.115)
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Figure 9.41: (a) Input voltage to OpAmp unity gain follower (b) Output waveform with V1 small
(Non-Saturating) (c) Input waveform with V1 large.

For a small input voltage V1, the output will be non-saturating, and the output waveform is shown
in Figure 9.41b.

e initial slope of the output voltage is,

dvo.t/

dt
D V1!t D V1.GBP /: (9.116)

e results above are valid for linear operation; implying that the input voltage must be sufficiently
small so that the OpAmp does not saturate. For a large, saturating input voltage, the output
waveform is shown in Figure 9.41c. Note that the initial slope of the output response is lower
than predicted for linear theory. e inability of the OpAmp to rise as quickly as predicted by
linear theory is called slew rate limiting. e initial slope of the output response is called the slew
rate, SR, defined as,

SR D
dvo.t/

dt

ˇ̌̌̌
maximum

: (9.117)

e OpAmp begins slewing when the initial slope of the output waveform is less than V1.GBP /.
e slew rate is specified in manufacture’s specifications in volts per microsecond.

e slew rate is related to power bandwidth, fp. e power bandwidth of the OpAmp is
defined as the frequency at which a sinusoidal output begins to distort. e implication is that
slew rate limits the bandwidth of OpAmp operation for amplifier and filter designs.

Given a output signal at the rated output voltage of the OpAmp,

vo .t/ D Vout sin
�
2�fpt

�
; (9.118)

the maximum slew rate is,

dvo .t/

dt

ˇ̌̌̌
maximum

D Vout2�fp cos
�
2�fpt

�ˇ̌
tD0

D Vout2�fp: (9.119)
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If Vout2�fp > SR, the output waveform is distorted. e power bandwidth is therefore defined
by the slew rate,

fp D
SR

2�Vrated
; (9.120)

where Vrated is the rated OpAmp output voltage.
Detailed SPICE models for the �A741, created from its equivalent models and including

all the above discussed properties, are available in essentially every modern SPICE simulation
package.

9.10 CONCLUDINGREMARKS
Signal filtering concepts have been described in this chapter. It was demonstrated that bandpass
filters could be designed by cascading low-pass and high-pass filters. ree types of active fil-
ters employing OpAmps were shown. Design criteria such as cutoff frequency, passband ripple,
and stopband attenuation are used to determine order and type of active filter that best suits the
requirements.

e three filter types and their characteristics are:

Butterworth Filter

• Maximally flat - no ripple

• All pole low-pass filter

• Can be implemented using Sallen and Key circuit

Chebyshev Type 1 Filter

• Ripple in the passband

• All pole low-pass filter

• Can be implemented using Sallen and Key circuit

• Has a steeper transition region than Butterworth for a given order filter

Switched capacitor networks were discussed as a means to implement active circuits in MOS
integrated circuit using capacitance ratios instead of resistors. e design advantage lies in the
elimination of resistors, which require large areas when fabricated in integrated circuits.emajor
drawback is the frequency limitations imposed by the switching.

e frequency response limitations of OpAmps was discussed in terms of gain bandwidth
(GBP) and slew rate (SR). e response of an active circuit depends not only on the components
external to the OpAmp, but on the OpAmp itself.
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SUMMARYDESIGNEXAMPLE
Digital-to-Analog (D/A) conversion of electrical signals typically requires output low-pass fil-
tering in order to remove undesirable high-frequency signal components. As an example, digital
audio systems typically require this low-pass filtering at the output so that the signals passed on
to the power amplification stages are faithful reproductions of the original audio input.

Audio signals are contained to the frequency band, 40Hz < f < 20 kHz. Compact disk
systems sample this audio signal at 44.1 kHz prior to analog-to-digital conversion. e digital
samples are then converted to 16 binary bits of information (65,536 levels) and encoded onto the
compact disk. When the disk is to be replayed, the individual words of information are sampled
several times (oversampled) before D/A conversion. e output of the D/A converter contains the
original signal spectrum with sidebands centered at frequencies that are multiples of the product
of the sampling rate and the oversampling constant. It is these sidebands that must be eliminated.

Design a filter to eliminate the sidebands of 4x oversampled compact disk D/A conversion
without distorting the frequency content of the original signal by more than 0.25 dB at any
frequency.

Solution:
e human ear is particularly sensitive to variations in frequency content: the designed

filter should be smooth in the passband. A Butterworth filter is a good choice (Chebyshev, Type
2 might be an alternative). e sideband signals should be attenuated so that they are less than one
level of digitization. Quantization into 65,536 levels implies that filter must introduce 96.33 dB
attenuation at the lower frequency edge of the first sideband. e lower edge of this sideband is
at:

fs D 4.44:1 kHz/ � 20 kHz D 156:4 kHz:

A 0.25 dB variation at the edge of the passband sets the value of for the Butterworth filter:p
1C "2 D 100:025 ) " D 0:24342:

e order of the filter is then determined to be:

n D
1

2

8̂̂<̂
:̂ log

�
109:633 � 1

�
� log

�
"2
�

log
�
fs

fc

�
9>>=>>; D 6:08:

At least a seventh-order Butterworth filter is necessary. e three second-order damping coeffi-
cients necessary for this filter are:

�1 D 0:2225 �2 D 0:6235 �3 D 0:9010:



730 9. ACTIVE FILTERS

e resonant frequency for the Butterworth filter is given by:

!o D
!c
n
p
"

D
2� .20; 000/

7
p
0:24343

D 153:77 krad=s .24:473 kHz/ :

Since gain is not a factor in the design requirements, a uniform time constant realization is chosen
for simplicity and uniformity. One resistor-capacitor pair that will adequately approximate the
resonant frequency (the filter resonant frequency has been chosen slightly larger [24.54 kHz]
than the theoretical value) is:

R D 1:38 k� C D 0:0047�F:

One possible filter realization is shown below with the SPICE verification:
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PROBLEMS
9.1. A complex-conjugate pair of poles is characterized by its resonant frequency and damping

coefficient:
!o D 1 krad=sec � D 0:6:

(a) Determine the maximum magnitude error of the Bode straight-line magnitude ap-
proximation.

(b) Determine the maximum magnitude phase error of the �-dependent Bode straight-
line phase approximation.

9.2. e voltage gain of an amplifier is described by the following transfer function:

Av.!/ D
.j!/2 

1C 0:9
j!

50
C

�
j!

50

�2!�
1C

j!

10,000

��
1C

j!

80,000

� :
Plot the straight-line approximate Bode diagram. Compare results to a computer gener-
ated exact plot of the magnitude and phase.

9.3. e transconductance of an amplifier is described by the following transfer function:

GM .!/ D
.j!/2�

1C
j!

10

��
1C

j!

40

� 
1C 0:7

j!

15,000
C

�
j!

15,000

�2! :
Plot the straight-line approximate Bode diagram. Compare results to a computer gener-
ated exact plot of the magnitude and phase.

9.4. e transresistance of an amplifier is described by flat midband region of value 20 k�
edged by low- and high-frequency poles.
e two low-frequency poles are at:

fL1 D 100Hz and fL2 D 30Hz:

ere are three high-frequency poles: a complex-conjugate pair described by:

fHo D 80 kHz and � D 0:8;

and a single pole at
fH3 D 300 kHz:

(a) Howmany zero-frequency zeros does the expression for the transresistance contain?



732 9. ACTIVE FILTERS

(b) Plot the straight-line approximate Bode diagram.

9.5. e current gain of an amplifier is described by flat midband region of value 1:8 kA/A
edged by low- and high-frequency poles.
ere are three low-frequency poles: a complex-conjugate pair described by:

fLo D 70Hz and � D 0:7;

and a single pole at
fL3 D 20Hz:

e three high-frequency poles are at:

fH1 D 14 kHz; fH2 D 26 kHz; and fH3 D 160 kHz:

(a) Howmany zero-frequency zeros does the expression for the transresistance contain?
(b) Plot the straight-line approximate Bode diagram.

9.6. Design requirements require the use of a 14th order low-pass Butterworth Filter. Avail-
able tables only provide the damping coefficients for first through eleventh order filters.
What are the damping coefficients necessary for this 14th order low-pass Butterworth
filter?

9.7. Design requirements require the use of a 15th order high-pass Butterworth Filter. Avail-
able tables only provide the damping coefficients for first through eleventh order filters.
What are the damping coefficients necessary for this 15th order high-pass Butterworth
filter?

9.8. A low-pass Butterworth filter is to be designed to meet the following design criteria:
Passband

nominal gain, Avo D 1


max D 0:6 dB at frequency, fc D 150Hz.

Stopband

fs D 900Hz

min D 60 dBmin.

Determine the order of filter necessary to achieve the design goals and the filter transfer
function.

9.9. A high-pass Butterworth filter is to be designed to meet the following design criteria:
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Passband

nominal gain, Avo D 1


max D 0:3 dB at frequency, fc D 150Hz

Stopband

fs D 60Hz

min D 50 dBmin.

Determine the order of filter necessary to achieve the design goals and the filter transfer
function.

9.10. First-order filter stages can be realized with a variety ofOpAmp circuit topologies. Deter-
mine the frequency response of the transfer function of the two first-order stages shown.

o
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(a)
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(b)

9.11. ird-order Butterworth transfer functions can be realized using a single OpAmp.
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(a) Determine the transfer function of the circuit shown.
(b) Choose appropriate component values to achieve a third-order low-pass Butter-

worth filter with resonant frequency, !o D 2 krad/sec.
(c) Verify the design using SPICE.

9.12. A second-order, resonant band-pass filter can be realized as shown.

o
v

_

+

i
v

2
R

1
R

2
C

1
C

(a) Determine the transfer function of the circuit shown.
(b) Choose appropriate component values to achieve a resonant frequency of 1 kHz

with a damping coefficient of 0.5.
(c) Use SPICE to simulate the circuit: determine the bandwidth between 3 dB fre-

quencies.

9.13. Design a unity gain 7th order Butterworth low-pass filter using OpAmps, resistors, and
capacitors with a 3 dB frequency of 200Hz. Verify your design with SPICE.

9.14. Design a uniform time constant 6th order Butterworth low-pass filter using OpAmps,
resistors, and capacitors with a passband edge at 400Hz and 
max D 1:5 dB. Verify your
design with SPICE.

9.15. Design a unity gain 5th order Butterworth high-pass filter using OpAmps, resistors, and
capacitors with a 3 dB frequency of 200Hz. Verify your design with SPICE.

9.16. Design a uniform time constant 8th order Butterworth high-pass filter using OpAmps,
resistors, and capacitors with a passband edge at 1 kHz and 
max D 2:2 dB. Verify your
design with SPICE.

9.17. A high-pass filter is to be designed to meet the following specifications.
Passband

nominal voltage gain, AVo D 25 dB
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passband edge, fc D 500Hz

max D 1:5 dB maximum

Stopband

fs D 150Hz

min D 50 dB (the gain in the stopband must be less than �25 dB)

(a) What is the minimum order Butterworth filter to meet these design goals?
(b) Design such a filter.
(c) Verify the design with computer simulation

9.18. A low-pass filter is to be designed to meet the following specifications.
Passband

nominal voltage gain, AVo D 0 dB
passband edge, fc D 500Hz

max D 1:3 dB maximum

Stopband

fs D 1:6 kHz

min D 55 dB

(a) What is the minimum order Butterworth filter to meet these design goals?
(b) Design such a filter.
(c) Verify the design with computer simulation

9.19. A Butterworth band-pass filter is to be constructed to meet the following design goals:
Passband

nominal voltage gain, AVo D 0 dB
passband edges, fc1 D 600Hz and fc2 D 4 kHz

max D 0:4 dB maximum

Stopbands


min D 35 dB (both stopbands)
cutoff frequencies, fs1 D 300Hz and fs2 D 8 kHz

Design the filter and verify the design goals using SPICE.
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9.20. Scenario: You are a junior engineer at Alcalá Engineering (a significant, but fictitious,
electronics firm). e company is in the process of designing a device that has an analog
multiplier as a critical component. In the process of investigating many possible designs
for this multiplier, the attached design was uncovered (reprinted from EDN , October
25, 1990). Your boss, the chief engineer, stops by your desk, comments on the inferior
design of the lowpass filter, asks you to fix it, and leaves.
Your task:

• Investigate the design of the current four-pole, low-pass filter.
• Prepare a design that will improve on the current design.
• Prepare a formal proposal to the chief engineer for your design. eoretical analysis

and computer simulation of designs are mandatory.

Constraints:

• Alcalá Engineering is operating in a highly competitive environment: thus the ad-
dition of a significant number of component parts is unacceptable (i.e., the filter is
to remain a four-pole filter).

• e low-frequency gain of this filter is significant to the design of the analog mul-
tiplier and therefore must not be changed from that of the original design.
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9.21. A Butterworth band-stop filter is to be constructed from a fourth-order Butterworth
low-pass filter and a fourth-order Butterworth high-pass filter. All input signals in the
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frequency range 500Hz � f � 2 kHz are to be attenuated by at least 40 dB: signals in
the passbands are to have unity gain and the passbands are to be as wide as possible.
Design the filter and verify the design goals using SPICE.

9.22. Design a resonant RLC band-pass filter to meet the following specifications:

Midband voltage gain D 0 dB
Center frequency D 15 kHz
3 dB bandwidth D 300Hz

Confirm the design with SPICE.

9.23. A fifth-order low-pass Butterworth filter is under design. Its design goals include:

Avo D 1

fc D 1 kHz

max D 1:5 dB

o
v

_

+

R

i
v

RR

2
C

1
C

3
C

In order to reduce the number of OpAmps, it has been decided to use a unity-gain,
third-order stage of the topology shown and a second-order stage.
e transfer function for this third-order stage has been determined to be:

vo D
vi

1C j!R.C2 C 3C3/C .j!/22R2C3.C1 C C2/C .j!/3R3C1C2C3
:

Complete the filter design and verify compliance to the design goals using SPICE.

9.24. Design a resonant RC band-pass filter to meet the following specifications:

Midband voltage gain D 12 dB
Center frequency D 500 kHz
3 dB bandwidth D 75Hz



738 9. ACTIVE FILTERS

Confirm the design with SPICE.

9.25. Design a resonant RC band-pass filter to meet the following specifications:

Midband voltage gain D 6 dB
Center frequency D 1 kHz
3 dB bandwidth D 50Hz

Confirm the design with SPICE. Pass a 1 kHz square wave through the filter and deter-
mine the THD of the output.

9.26. Design a low-pass filter to meet the following specifications:

1 dB attenuation at 100Hz
> 20 dB attenuation at 200Hz

for the following filter types:

(a) Butterworth
(b) Chebyshev

Compare the order for each of the filters.

9.27. Design a 1 kHz Chebyshev low-pass filter with the following specifications:

Passband ripple: 2 dB
Cutoff frequency, fc W 1 kHz
Stopband attenuation: > 20 dB at 1.8 kHz

Confirm the design with SPICE.

9.28. Plot the transfer function of a seventh order Chebyshev type I filter with a cutoff fre-
quency of 4 kHz and 1 dB passband ripple. Determine the stopband attenuation at 6 kHz.

9.29. Contrast the attenuation provided by a fourth order low-pass Chebyshev filter to a But-
terworth filter of the same order at a stopband frequency twice that of the cutoff fre-
quency. Let the ripple of the Chebyshev filter equal 1 dB.

9.30. Find the transfer function of a low-pass filter with the following specifications:

Cutoff frequency, fc W 200Hz
Passband ripple: 2 dB

• Stopband attenuation > 20 dB above 400Hz

9.31. Find the transfer function of a high-pass filter with the following specifications:
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Cutoff frequency, fc W 100Hz
Passband ripple: 3 dB
Stopband attenuation > 20 dB below 50Hz

9.32. Design a high-pass filter with the following specifications:

Cutoff frequency, fc W 100Hz
Passband ripple: 3 dB
Stopband attenuation > 20 dB below 50 kHz

Confirm the design with SPICE.

9.33. A switched-capacitor integrator, shown in the figure, is designed to have as its output the
following expression:

vo.t/ D �10

Z
vi .t/ dt:

If the switching frequency is 100 kHz, what value capacitor, C , is necessary?
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9.34. For the switched-capacitor integrator shown below, what input resistance corresponds to
the 2 pF and 12 pF for C1 with a clock frequency of 100 kHz?
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9.35. Design a switched-capacitor version of the differential integrator shown and find the
transfer function.
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9.36. Design an inverting amplifier with a gain of �10 using the circuit shown below. Assume
a clock frequency of 100 kHz and C1 D 5 pF. Show the clock waveforms for �1 and �2.
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9.37. Design a first order low-pass switched-capacitor filter with a cutoff frequency of 500Hz
with a clock frequency of 100 kHz. Use a capacitor value of 8 pF for one of the fixed
capacitors. Find the transfer function of the circuit.

9.38. Design a first order high-pass switched-capacitor filter with a cutoff frequency of 500Hz
with a clock frequency of 100 kHz. Use a capacitor value of 8 pF for one of the fixed
capacitors. Find the transfer function of the circuit.

9.39. Design a switched-capacitor version of the difference amplifier shown and find the trans-
fer function.
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20 kΩ5.1 kΩ

9.40. For an OpAmp with a slew rate of 7V/�s used in the unity gain configuration, what is
the shortest 0V to 5V pulse that can be used to ensure a full-amplitude output?

9.41. For an inverting amplifier using an OpAmp with a slew rate of 8V/�s, determine the
highest frequency input at which an 18V peak-to-peak output sine wave can be gener-
ated.
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C H A P T E R 10

Frequency Response of
Transistor Amplifiers

e characterization of the performance of amplifiers as described in Book 2 of this text has
suppressed all frequency-dependent effects. e amplifiers have been described in the so-called
“mid-band” frequency range. is range of frequencies is characterized by two basic simplifying
assumptions:

• e midband frequencies are high enough so that discrete circuit capacitors appear to have
negligible impedance with respect to the resistances in the circuit, and

• e midband frequencies are low enough so that the active elements (transistors, OpAmps,
etc.) appear to have frequency-invariant properties.

e magnitude of the gain of a typical amplifier is shown in Figure 10.1. At low frequencies
the circuit coupling and bypass capacitors reduce the gain.¹ At high frequencies the circuit active
elements degrade in performance. is degradation in performance also causes a drop in the gain
magnitude. Between these two extremes, the midband region of constant gain prevails.

A

.707A

o

o

HL

midband region

ω ω

|A(ω)|

ω

Figure 10.1: Typical amplifier gain frequency response.

In order to predict the frequency-dependent performance of amplifiers and other electronic
circuitry, several options are available:
¹Amplifiers without bypass or coupling capacitors do not experience degradation in performance characteristics at low frequen-
cies. e midband region for such amplifiers extends to DC.
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• Computer simulation

• Analytic calculations using phasor techniques and expanded transistor models on the entire
circuit

• Separate high-frequency and low-frequency effects from midband performance in analytic
calculations

Computer simulation alone accurately predicts circuit performance but gives the circuit designer
little insight into which factors are dominant in determining the performance characteristics. An-
alytic calculations also give accurate performance prediction but these calculations often involve
extremely difficult algebraic manipulation which must be repeated for each individual circuit. e
separation of individual effects (midband, low-frequency, and high-frequency) gives the designer
insight into exactly which circuit elements are dominant in each performance characteristic.

is chapter focuses on the separation of effects method as the primary analysis and design
tool with computer simulation as an aid in final fine tuning of designs. e separation method
follows the basic procedure:

1. e amplifier midband performance properties are determined as described in Book 2 of
this text,

2. e pole locations that affect low-frequency performance are separately determined,

3. e pole locations that affect high-frequency performance are separately determined, and

4. e results of steps 1–3 are combined to form the total response characteristic.

As was seen in Chapter 9, midband gain and pole location are sufficient to determine a frequency
response characteristic.

After a short reminder on frequency distortion, the chapter discusses time-domain testing
of amplifiers through the step response. Since amplifier performance characteristics are usually
only of interest between the 3-dB frequencies, the concept of dominant poles is explored. e
effect of bias and coupling capacitors on low-frequency response is discussed for both simple BJT
and FET amplifier stages. After modeling the high-frequency characteristics of diodes, BJTs, and
FETs, the high-frequency response of simple amplifier stages is discussed. Multistage amplifier
frequency response is determined through the cascading of the responses of the simple stages.

e frequency response of feedback amplifiers is discussed in Chapter 11.

10.1 FREQUENCYDISTORTION
In the previous chapters, transistor amplifiers were assumed to have constant gain-frequency re-
sponse over the desired frequency passband. ese amplifiers were described in the so-called
mid-band frequency range where external reactive elements and the reactive components of the
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transistor small-signal model did not affect the frequency domain properties of the amplifier. e
gain of the amplifier outside the mid-band frequency range is dependent on the reactive elements,
causing possible unequal gains for the frequency components of the input signal. is frequency
distortion is reflected in the gain-frequency (Bode) and phase-frequency plots of the amplifier.

10.1.1 GAINANDPHASERESPONSE
In Section 9.2, a frequency response in the passband was shown to have no distortion when the
circuit transfer function is constant with respect to frequency and the phase shift induced by
the circuit is linear with respect to frequency. e gain of an amplifier is reduced outside of the
mid-band. e gain-frequency curve is that of a band-pass filter.

Consider a single-pole high-pass function,

HHP.!/ D
1

1 � j
!L

!

; (10.1)

where !L is the (lower) cutoff frequency for the high-pass transfer function.
e magnitude and phase of the single-pole transfer function of Equation (10.1) are,

jHHP.!/j D
1r

1C

�!L
!

�2 ; (10.2)

and

†HHP.!/ D tan�1
�!L
!

�
: (10.3)

e frequency response is shown on a Bode diagram in Figure 10.2.
When a single-pole system is excited with an input signal consisting of two sinusoids of

frequencies 0:5!L and 6!L (Figure 10.3a), the output (Figure 10.3b) is distorted due to the dif-
ference in gain and phase of the two input sinusoids.

Similar analysis may be performed to show frequency distortion in systems described by
single-pole low-pass transfer functions,

HLP.!/ D
1

1C j
!

!H

; (10.4)

where !H is the (high) cutoff frequency for the low-pass transfer function.
e magnitude and phase of the single-pole low-pass transfer function are

jHLP.!/j D
1s

1C

�
!

!H

�2 ; (10.5)
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Figure 10.2: (a) Magnitude of high-pass transfer function, (b) Phase of high-pass transfer function.

and

†HLP.!/ D � tan�1

�
!

!H

�
: (10.6)

Bode diagrams of Equations (10.5) and (10.6) are mirror images of Figure 10.2 with a high
cutoff frequency of !H .

10.1.2 STEPANDPULSERESPONSE
Signal distortion by an amplifier can be classified into three general categories:
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Figure 10.3: (a) Input signal of consisting of two sinusoids, (b) Resulting distorted output due to
high-pass transfer function.

1. If an amplifier is linear but its amplitude response is not constant with frequency, the ampli-
fier introduces amplitude distortion. e amount of amplitude distortion can be determined
from the frequency response of the amplifier.

2. If an amplifier is linear but its phase shift is not a linear function of frequency, it introduces
phase, or delay, distortion.

3. If an amplifier is non-linear, non-linear distortion results; e.g., superposition can no longer
be used.

e step response provides information about all three types of distortion mentioned above.
erefore, the determination of the step response (pulse response testing is a subset of step re-
sponse) is a powerful test of amplifier linearity.

A step voltage, shown in Figure 10.4, is a voltage signal that maintains a zero value for all
time t < 0 and a constant value V1 for all time t > 0. e transition between the two voltage levels
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occurs at t D 0 and is ideally instantaneous. In real systems, the transition time from 0 to V1 is
accomplished in an arbitrarily small time interval that is significantly smaller than the response
time of the circuit under test.

t0

V
1

Step Input

Figure 10.4: Step input voltage.

For a single-pole electronic circuit, the output voltage in the time domain is of the form,

vo D B1 C B2e
�t=� ; (10.7)

where
vo is the output voltage,
B1 and B2 are constants, and
� is the time constant of the electronic circuit.

e constant B1 is the final steady-state value of the output voltage as t ! 1. If the final voltage
is defined as Vf , then B1 D Vf . e constant B2 is determined by the initial voltage, Vi . At
t D 0; vo D Vi D B1 C B2, or B2 D Vi � Vf . erefore, the general solution for a single-pole
electronic circuit,

vo D Vf C
�
Vi � Vf

�
e�t=� : (10.8)

Low Pass Circuit Response
For a low-pass electronic circuit, the initial voltage Vi D 0 and the final voltage Vf D V1.² e
output therefore is given by,³

vo D V1

�
1 � e�t=�

�
; (10.9)

where

� D
1

!H
: (10.9a)

²In this discussion, only the time varying portion of the signal is considered: in order to obtain the total output signal, the
quiescent condition must be included.
³e relationship between Equation (10.4) and (10.9) is obtained through Laplace techniques.
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e low-pass circuit step response is shown in Figure 10.5. e rise time, tr , is defined as the
time it takes the voltage to rise from 0.1 to 0.9 of its final value. e time required for vo to rise
to 0:1V1 is approximately 0:1� and the time to reach 0:9V1 is approximately 2:3� . e difference
between these two time values is the rise time of the circuit, and is given by

tr D .2:3 � 0:1/� D 2:2�: (10.10)

0
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Figure 10.5: Low-pass circuit step response.

Since the time constant, � , of a circuit is equal to the inverse of the low-pass cutoff frequency in
radians, !H , Equation (10.10) can be related to the cutoff frequency,

tr D 2:2� D
2:2

!H
D

2:2

2�fH
�
0:35

fH
: (10.11)

us, the rise time is proportional to the time constant of the circuit and inversely proportional
to the cutoff frequency.

A variant of the step input voltage is the pulse input shown in Figure 10.6. e low-pass
circuit response to a pulse is identical to that of the step response given in Equation (10.12) for
t < tp. At the end of the pulse .t D tp/, the output voltage is at a peak of Vp and must decrease
to zero with a time constant � for t > tp, as indicated in Figure 10.7. e output waveform is
distorted when compared to the input pulse waveform. In particular, the output waveform extends
well beyond the pulse width.

To minimize pulse distortion, the rise time must be small compared to the pulse width.
If the cutoff frequency, fH , is chosen to be 1=�p, then the rise time is tr D 0:35tp. e output
voltage for this case is shown in Figure 10.8. A rule of thumb that may be used with regards to
pulse response is: a pulse shape will be preserved if the cutoff frequency is greater than the reciprocal of
the pulse width.
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Figure 10.6: Pulse input voltage.
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Figure 10.7: Low-pass circuit pulse response.

High-Pass Circuit Response
From Equation (10.8), the time domain response of the high-pass circuit has an initial voltage
Vi D V1 and a final voltage Vf D 0. erefore, the output voltage of the high-pass circuit is that
of a decaying exponential,

vo D V1e
�t=� ; (10.12)

where, in this case � is related to the lower cutoff frequency:

� D
1

!L
: (10.12a)

e input and output voltages are shown in Figure 10.9. e output voltage is 0.61 of its initial
value at 0:5� , 0.37 at 1:0� , and 0.14 at 2:0� . e output is nearly decayed to 5% of the peak voltage
after 3:0� , and less than 1% if t > 5:0� .
For a pulse with tp small compared to the time constant � , the output response is shown in
Figure 10.10. e output at t D tp is vo D V1e

�tp=� D Vp. Since Vp is less than V1, the voltage
becomes negative and decays exponentially to zero. For t > tp, the output voltage is,

vo D V1

�
e�tp=� � 1

�
e�.t�tp/=� : (10.13)
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Figure 10.9: High-pass circuit step response.

Note that the distortion in the pulse caused by the high-pass circuit has resulted in a tilt to
the top of the pulse and an undershoot at the end of the pulse. e percent tilt or sag in time tp
is approximately

vo � V1

�
1 �

t

�

�
: (10.14)

If Figure 10.9 is re-drawn for tp � � , shown in Figure 10.11, the tilt in the output voltage is clear.
e percent tilt or sag in time t1 is,

sag D
V1 � Vp

V1
� 100 D

tp

�
� 100%: (10.15)

Equation (10.15) is valid for the tilt of each half cycle of a symmetrical square wave with peak-
to-peak voltage of V1 and a period T D 2tp. If fsq D 1=Tsq is the frequency of the square wave,
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Figure 10.11: Tilt in step or pulse response due to high-pass circuit.

the sag may be expressed as,

sag D
Tsq

2�
� 100 D

1

2fsq�
� 100 D

�fL

f
� 100%: (10.16)

e tilt is then directly proportional to the cutoff frequency, fL.

Example 10.1
Find the single-pole unity gain frequency response required for 10% sag at 1 kHz.
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Solution:
Using Equation (10.16), the cutoff frequency of the high-pass transfer function is deter-

mined:
fL D

sag
100

�
f

�

�
D
10.1000/

100�
D 31:85Hz:

ecutoff frequencymust not exceed 31.85Hz for the desired sag.erefore, the transfer function
from Equation (10.1) is,

HHP.!/ D
1

1 � j
!L

!

D
1

1 � j
2�.31:85/

!

D
1

1 � j
200

!

:

10.2 DOMINANTPOLES
e location of the high or low cutoff frequency for electronic circuits with more than one pole
(and zero) becomes increasingly difficult to find analytically as the number of poles increases.
Computer software packages with an equation solver, such as MathCAD, or advanced engineer-
ing and scientific calculators with the equation solver capabilities may be required to find the
cutoff frequency. However, it may be desirable to use simple formulas and approximations that
yield the cutoff frequencies when initially designing a circuit.

e dominant pole approximation simply ignores second-order effects of poles (and zeros)
that are far removed from the pole that dominates in the calculation for the cutoff frequency
of the electronic circuit. e low cutoff frequency of a high-pass response is dominated by the
largest pole in the transfer function; whereas the high cutoff frequency of a low-pass response is
dominated by the smallest pole. When circuits are designed with dominant poles, the analysis
of the cutoff frequencies becomes considerably simpler. Non-dominant poles and zeros must be
carefully analyzed in some instances that may affect circuit stability, such as in feedback amplifiers
and oscillators. Stability issues in feedback amplifiers are discussed in Chapter 11.

10.2.1 LOWCUTOFF FREQUENCY (HIGHPASS)
e general form of the transfer function of a low-frequency response is,

HHP.!/ D
.j! C !z1/.j! C !z2/ : : : .j! C !zn/

.j! C !p1/.j! C !p2/ : : : .j! C !pn/
; (10.17)

where !z1; : : : ; !zn the frequencies for the low-frequency zeros of the response,
and !p1; : : : ; !pn the frequencies for the low-frequency poles of the response.
If a midband region exists, the number of poles must equal the number of zeros. e highest pole
frequency is !p1 and subsequent poles are ordered such that !p1 � !p2 � !p3 � : : : � !pn. As
! approaches midband frequencies, HHP.!/ approaches unity.
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In designing a circuit, the zeros are placed at very low frequencies so that they do not
contribute appreciably to the determination of the low cutoff frequency. A dominant pole, say
!p1, has a much higher frequency than the others. In this case, the transfer function in Equa-
tion (10.17) can be approximated as a first-order high-pass response,

HHP.!/ �
j!

.j! C !p1/
: (10.18)

e approximate transfer function implies that the amplifier low cutoff frequency is dominated
by a pole at j! D �!p1, and that the low cutoff frequency is approximately

!1 � !p1: (10.19)

As a rule of thumb, the dominant pole approximation can be made if the highest frequency pole
is separated from the nearest pole or zero by a factor of four.

If a dominant pole does not exist, a complete Bode plot may have to be constructed to
determine the low cutoff frequency. Alternately, approximate formulas may be used to determine
the location of the low cutoff frequency. For instance, a frequency response with two poles and
two zeros has a transfer function of the form,

HHP.!/ D
.j! C !z1/.j! C !z2/

.j! C !p1/.j! C !p2/
: (10.20)

e squared magnitude of the transfer function is,

jHHP.!/j
2

D
.!2 C !2z1/.!

2 C !2z2/

.!2 C !2p1/.!
2 C !2p2/

: (10.21)

e low cutoff frequency is defined by jHHP.!l/j
2

D 1=2. erefore, Equation (10.21) becomes,

1

2
D
.!2
l

C !2z1/.!
2
l

C !2z2/

.!2
l

C !2p1/.!
2
l

C !2p2/

D

1C

 
1

!2
l

! �
!2z1 C !2z2

�
C

 
1

!4
l

! �
!2z1!

2
z2

�
1C

 
1

!2
l

!�
!2p1 C !2p2

�
C

 
1

!4
l

!�
!2p1!

2
p2

� :
(10.22)

Equation (10.22) is simplified by assuming that the zeros are significantly smaller than the low
cutoff frequency,

1

2
�

1

1C

 
1

!2
l

!�
!2p1 C !2p2

�
C

 
1

!4
l

!�
!2p1!

2
p2

� : (10.23)
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Solving for !l using the quadratic equation yields,

!l D
!p1s

�.1C k2/C
p
.1C k2/2 C 4k2

2

; (10.24)

where !p1 D k!p2.
A plot of Equation (10.24) is shown in Figure 10.12, clearly showing that for k > 4, the

dominant pole frequency is within 5.4% of the low cutoff frequency.
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Figure 10.12: Low cutoff frequency as a function of the ratio of pole locations.

If the zeros cannot be ignored, Equation (10.22) can be solved by using the approximation
that !L is greater than all of the poles and zeros. By neglecting the terms containing 1=!4L, the
low cutoff frequency is approximately,

!L �

q
!2p1 C !2p2 � 2!2z1 � 2!2z2: (10.25)

Equation (10.25) can be extended to any number of poles and zeros; that is,

!L �

q
!2p1 C !2p2 C � � � C !2pn � 2!2z1 � 2!2z2 � � � � � 2!2zn: (10.26)

If a dominant pole exists, Equations (10.25) and (10.26) reduce to Equation (10.19).

10.2.2 LOW-PASSRESPONSE
e general form of the transfer function of a high-frequency response is,

HLP.!/ D

�
1C

j!

!z1

��
1C

j!

!z2

�
: : :

�
1C

j!

!zn

�
�
1C

j!

!p1

��
1C

j!

!p2

�
: : :

�
1C

j!

!pn

� ; (10.27)
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where !z1; : : : ; !zn the frequencies for the high-frequency zeros of the response,
and !p1; : : : ; !pn the frequencies for the high-frequency poles of the response.

If a midband region exists, the number of poles must be greater than or equal to the number
of zeros.e lowest pole frequency is!p1 and subsequent poles are ordered such that!p1 � !p2 �

!p3 � � � � � !pn. As ! approaches midband frequencies, HLP.!/ approaches unity.
In designing a circuit, the zeros are placed at very high frequencies so that they do not con-

tribute appreciably to the determination of the high cutoff frequency. A dominant pole, say !p1,
has a much low-frequency than the others. In this case, the transfer function in Equation (10.17)
can be approximated as a first order high-pass response,

HLP .!/ �
1�

1C
j!

!p1

� : (10.28)

e approximate transfer function implies that the amplifier high cutoff frequency is dominated
by a pole at j! D �!p1, and that the high cutoff frequency is approximately

!H � !p1: (10.29)

As a rule of thumb, the dominant pole approximation can be made if the lowest frequency pole
is separated from the nearest pole or zero by a factor of four.

If a dominant pole does not exist, approximate formulas may be used to determine the
location of the high cutoff frequency. For instance, a frequency response with two poles and two
zeros has a transfer function of the form,

HLP.!/ D

�
1C

j!

!z1

��
1C

j!

!z2

�
�
1C

j!

!p1

��
1C

j!

!p2

� : (10.30)

An approximate formula for the high cutoff frequency can be derived in a manner similar to that
used above to determine the low cutoff frequency. e high cutoff frequency is,

!H D !p1

vuut� .1C k2/C

q
.1C k2/

2
C 4k2

2
; (10.31)

where

!p1 D !p2=k:

Figure 10.12 can be used to show that for k � 4, the dominant pole frequency, !p1, is within
5.4% of the high cutoff frequency.
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If the zeros cannot be ignored, !H is approximately,

!H �
1s

1

!2p1
C

1

!2p2
�

2

!2z1
�

2

!2z2

: (10.32)

Equation (10.32) can be extended to any number of poles and zeros; that is,

!H �
1s

1

!2p1
C

1

!2p2
C � � � C

1

!2pn
�

2

!2z1
�

2

!2z2
� � � � �

2

!2zn

: (10.33)

If a dominant pole exists, Equations (10.32) and (10.29) reduce to Equation (10.29).

10.3 EFFECTOFBIAS ANDCOUPLINGCAPACITORSON
LOW-FREQUENCYRESPONSE

As mentioned in the preface to this chapter, the low-frequency response is separately determined
by analyzing the effects of bias and coupling capacitors on the circuit. In this section, the methods
for determining BJT and FET amplifier low cutoff frequency are shown.

10.3.1 BJT LOW-FREQUENCYRESPONSE
Common-emitter Amplifier
A single stage common-emitter amplifier with input and output coupling capacitors is shown in
Figure 10.13a. e small-signal equivalent model of the circuit is shown in Figure 10.13b.

In performing the analysis, it is convenient to assume that h�1
oe is very large. With this

assumption, the small-signal circuit shows that there is little interaction between the coupling
capacitors. e poles can be found by determining the output voltage and input current of the
amplifier.

e input impedance is of the small-signal equivalent of Figure 10.13b is,

Zi D Rin CRS C
1

j!C1
D
�
RB==

�
hie C

�
1C hfe

�
RE

��
CRS C

1

j!C1
: (10.34)

e input current to the circuit is the ratio for the input voltage to the input impedance,

ii D
vi

Rin CRS C
1

j!C1

; (10.35)
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Figure 10.13: (a) Common-emitter amplifier with input and output coupling capacitors, (b) Small-
signal equivalent circuit.

and the base current is,

ii D
viRB

RB C hie C
�
1C hfe

�
RE

j!C1

1C j!C1 .Rin CRS /

D
vi

hie C
�
1C hfe

�
RE

j!RinC1

j!C1 .Rin CRS /C 1

D
viRinC1�

hie C
�
1C hfe

�
RE

�
!p1

�
j!

j! C !p1

�
;

(10.36)
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where the one of the pole locations is,

!p1 D
1

C1
˚
RS C

�
RB==

�
hie C

�
1C hfe

�
RE

��	 : (10.37)

e output voltage of the amplifier is,

vo D �
hfeibRCRL

RC CRL C
1

j!C2

D �hfeibRO
j!

j! C !p2
; (10.38)

where the other pole is at,
!p2 D

1

C2 .RC CRL/
: (10.39)

Inspection of the pole frequencies shows that the poles are determined by the capacitor
multiplied by the resistive discharge path. is is merely the time constant of the circuit.

at is, the discharge path for C1 is through the resistance RS C fRB==Œhie C .1C

hfe/RE �g and discharge path for C2 is through the resistance RC CRL. erefore, the poles can
be found by simply determining the time constant of that portion of the amplifier circuit being
analyzed. From the bias conditions and selection of the two capacitor values, the dominant pole
can be established by one of the capacitors.

Common-Emitter Amplifiers with Emitter-Bypass Capacitors
e simple analysis described above cannot be accurately used for a common-emitter amplifier
with emitter-bypass capacitor shown in Figure 10.14a due to the interaction of the capacitors C1
and CE . By studying the small-signal equivalent in Figure 10.14b, it becomes obvious that there
is some interaction between the input coupling capacitor and the emitter-bypass capacitor.

In performing the analysis, it is again convenient to assume that h�1
oe is very large. To find

the pole locations, nodal analysis is carried out using frequency domain equivalent impedances.
e current gain Ai .!/, is found by nodal analysis:

IS D
vi

RS
D

v1

RS
C j!C1 .v1 � v2/ (10.40a)

j!C1 .v1 � v2/ D
v2

RB
C
.v2 � v3/

hie
(10.40b)

.v2 � v3/

hie
C hfeib D v3

�
j!CE C

1

RE

�
(10.40c)

0 D hfeib C
v4

RC
C v4

j!C2

RLC2 C 1
: (10.40d)

e small-signal base current is,

ib D
.v2 � v3/

hie
: (10.41)
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Figure 10.14: (a) Common-emitter amplifier with emitter-bypass capacitor, (b) Small-signal equiv-
alent circuit.

e output current is,

io D
j!C2v4

j!RLC2 C 1
: (10.42)

e solution to the nodal equations in Equation (10.40) for the current gain is,

Ai .!/ D
io

iS
D

�Aim.j!/
2

�
j! C

1

RECE

�
�
j! C

1

.RL CRC /C2

�
Œ.j!/2 C j!a2 C a1�

; (10.43)
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where

a2 D

RB C hie

C1
C
.RB CRS /

�
hie C

�
1C hfe

�
RE

�
CRSRB

RECE
RBRS C hie .RB CRS /

(10.44a)

�
1

C1 .RS C hie/
C

hfe

CE .RS C hie/
; RB � RS ; hie

a1 D
RB C hie C

�
1C hfe

�
RE

RECEC1 ŒRBR1 C hie .RB CRS /�
(10.44b)

�
RB C

�
1C hfe

�
RE

RBRE .RS C hie/ C1CE
; RB � RS ; hie;

and Aim is the midband current gain with all capacitors shorted,

Aim D
hfe .RS==RB/ .RC /

Œ.RS==RB/C hie� .RC CRL/
�

hfeRS

RS C hie

�
RC

RC CRL

�
; (10.44c)

for RB � Rs .
As expected, the order of the numerator and denominator are the same: three zeros and

three poles. It is evident from the above equations that, as expected, the output coupling capacitor,
C2, does not interact with the emitter-bypass capacitor, CE , and the input coupling capacitor, C1,
since C2 does not appear in Equation (10.44) and contributes a pole in Equation (10.43). From
Equation (10.44a) and (10.44b), a strong interaction between C1 and CE is evident.

e three capacitor values can be manipulated to design a circuit with a specific low cutoff
frequency, !l . Since C2 contributes its own pole and does not interact with the other capacitors,
the difficulty in determining the pole locations does not rest with this capacitor value. e pole
location due to C2 can be designed to be significantly lower than the chosen dominant pole. e
other two poles are a complex interaction of C1 and CE . e zero location due to 1=RECE must
be significantly smaller than the low cutoff frequency. e two remaining pole locations are found
by making the following approximations:

.j!/2 C j!a2 C a1 D
�
j! C !p1

� �
j! C !p2

�
; where !p1 � !p2

� .j! C a2/

�
j! C

a1

a2

�
; where a2 �

a1

a2
:

(10.45)

e pole locations due to the interacting C1 and CE are found from Equations (10.43)
and (10.45),

!p1 � a2 �
1

.RS C hie/

 
1

C1
C

�
1C hfe

�
CE

!
(10.46)
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and

!p2 �
a1

a2
�

RB C
�
1C hfe

�
RE

RBRE
�
CE C

�
1C hfe

�
C1
� : (10.47)

In designing a circuit with a specific low cutoff frequency, it is suggested that the cutoff
frequency equal !l � !p1 � a2, and select the values for C1 and CE . e value for C2 can be
designed to be significantly lower than the dominant pole. Since one end of the emitter-bypass
capacitor, CE is ground, a large value chemical capacitor (electrolytic or tantalum) can be used.
In doing so, a suggested value of CE is,

CE � .hfe C 1/C1; (10.48)

which allows for the solution for C1 using Equation (10.46) and !l � !p1 � a2,

C1 �
2

!l .RS C hie/
: (10.49)

With the C1 and CE established, the !p2 can be found,

!p2 D
RB C

�
1C hfe

�
RE

2hFERBREC1
: (10.50)

e pole location due to C2 is fixed at !p3 � !l ,

!p3 D
1

.RC CRL/ C2
�
!l

10
: (10.51)

erefore, the output-coupling capacitor value is:

C2 �
10

!l .RC CRL/
: (10.52)

Example 10.2
Complete the design for the common-emitter amplifier shown below for a low cutoff frequency
of 40Hz. Find the midband gain. From the quiescent point, the following parameters were de-
termined: hfe D 200; hie D 34:7 k�.
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Solution:
e midband gain is easily found from the midband small-signal model,

Avm D
�hfe .RC==RL/

hie
D

�200.5000/

34:7 k
D �28:8:

Equation (10.49) yields the value for C1,

C1 �
2

!l .hie/
D

2

2� .40/ .34:7 k/
� 0:22�F:

Using Equation (10.48), the value of the emitter-bypass capacitor is,

CE � hfeC1 D 200.0:22�/ D 44�F ) 47�F (standard value):

Lastly, Equation (10.52) yields,

C2 �
10

!l .RC CRL/
D

10

2�.40/.20 k/
� 2�F ) 2:2�F(standard value):

e values of the capacitors are consistent with a dominant pole response.

Although the exact analysis above will yield accurate results, it may be preferable in design
to use approximate relationships using a simplified approach. e simplified approach consists
of assuming that the capacitances do not interact. e pole corresponding to each capacitor is
determined with the other capacitors shorted: that is, e pole location corresponding to each
capacitor is determined by finding the resistance in its discharge path.

For the common-emitter amplifier with coupling and bypass capacitors, the poles corre-
sponding to C1 and C2 have been solved above in the analysis for the common-emitter amplifier
with input and output capacitors (Equations (10.37) and (10.39)). e voltage gain of the circuit
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with C1 and C2 shorted yields the frequency dependent effects of the emitter-bypass capacitor.
e base current is then,

ib D
vi

hie C
�
hfe C 1

� �
RE==

1

j!CE

� ; (10.53)

where 1
j!CE

is the impedance of the emitter-bypass capacitor. e output voltage is,

vo D �hfeib .RC==RL/ : (10.54)

Substituting Equation (10.53) into (10.54) yields the voltage gain,

Av.!/ D
vo

vi
D

�hfe.RC==RL/

�
1C

1

j!RECE

�
hie

�
1C

1

j!RECE

�
C

�
1C hfe

�
j!CE

: (10.55)

With the capacitor shorted, the midband gain is found,

Av D
vo

vi
D

�hfe .RC==RL/

hie
: (10.56)

e gain is therefore,

Av.!/ D

Avm

�
j! C

1

RECE

�
j! C

�
1

RE
C
hfe C 1

hie

�
1

CE

: (10.57)

e pole due to CE is therefore,

!P3 D

�
1

RE
C
hfe C 1

hie

�
1

CE
: (10.58)

e pole in Equation (10.58) is then designed to be significantly smaller than !p1 and !p2 in
Equations (10.37) and (10.39) to complete the simplified design approach: that is, CE is chosen
so that !p3 � !p1; !p2.

In integrated circuit design, it is undesirable to have large coupling and bypass capacitors
since they require large chip area. Since most integrated circuit amplifiers use constant current
source biasing schemes and are commonly DC coupled in a differential amplifier configuration, a
low cutoff frequency does not exist. is implies that DC signals are amplified by these circuits.



10.3. EFFECTOFBIASANDCOUPLINGCAPACITORSONLOW-FREQUENCYRESPONSE 765

2
C

L
R

E
R

C
R

CC
+V

B2
R

B1
R

s
R 1

C

i
v

o
v

(a)

B
R

1
C

2
C

E
R

C
R

L
R

+

_

+

_

S
R

i
v

ie
h

fe
h

b
i

b
i

o
v

(b)

Figure10.15: (a) Common-base amplifier with input and output coupling capacitors, (b) Small-signal
equivalent circuit.

Common-Base Amplifier
Figure 10.15 shows a common-base amplifier and its small-signal equivalent. e analysis and
design procedure follows that of the common-emitter amplifier.
In performing the analysis, it is again convenient to assume that h�1

oe is very large. With this
assumption, the small-signal circuit shows that there is little interaction between the coupling
capacitors. erefore, the pole locations due to each capacitor can be independently calculated.
e discharge path for C1 is through the resistance

RS C
��
1C hfe

�
RE== Œhie CRB �

�
:

erefore, the pole due to C1 is,

!p1 D
1

C1
˚
RS C

��
1C hfe

�
RE== Œhie CRB �

�	 : (10.59)
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e discharge path for C2 is through the resistance RC CRL. erefore, the pole due to C2 is,

!p2 D
1

C2 .RC CRL/
: (10.60)

From the bias conditions and selection of the two capacitor values, the dominant pole can be
established by one of the capacitors.

e simple analysis described above cannot be accurately used for a common-base amplifier
with base-bypass capacitor, CB from the base to ground, due to the interaction of the capacitors
C1 and CB . For this circuit, the analysis is similar to that performed for the common-emitter
amplifier with emitter bypass capacitor is required. However, if an exact solution to the poles is
not required, a simplified approach similar to that shown for the common-emitter amplifier with
emitter-bypass capacitor may be used, where the pole determined by CB is significantly smaller
than the other two poles found in Equations (10.59) and (10.60). at is, the pole due to CB may
be ignored since !RBCB � 1.

10.3.2 FETLOW-FREQUENCYRESPONSE
A single stage common source enhancement NMOSFET amplifier with input and output cou-
pling capacitors and source-bypass capacitor is shown in Figure 10.16a. e small-signal equiva-
lent model of the circuit is shown in Figure 10.16b.

In performing the analysis, it is convenient to assume that rd is large compared to the
output load and that the impedance of the dependent current source is also very large. With these
assumptions, the small-signal circuit shows that there is little interaction between the coupling
and bypass capacitors due to the large input resistance inherent in FETs. erefore, the pole
locations due to each capacitor can be independently calculated.

e discharge path for C1 is through the resistance, RG CRi . erefore, the pole due to
C1 is,

!p1 D
1

C1 .RG CRi /
: (10.61)

When C2 and CS are shorted, the transfer function of the amplifier due to C1 is,

Av1.!/ D
Avm .j!/

j! C
1

C1 .RG CRi /

; (10.62)

where Avm is the midband gain of the amplifier. e midband gain of the amplifier is found by
analyzing the circuit with all capacitors shorted. e midband gain is,

Avm D �
gmRG .RD CRL C rd /

Ri CRG
: (10.63)



10.3. EFFECTOFBIASANDCOUPLINGCAPACITORSONLOW-FREQUENCYRESPONSE 767

2
C

L
R

S S
R

D
R

CC
+V

G2R

G1
R

i
R 1C

i
v

o
v

C

(a)

i
R

o
R

1
C

2
C

S
R

S
C

G
R

G1
=R

G2
R

D
R

L
R

+

_

+

_

+

_

i
v

gs
v

m
g

gs
v

d
r

o
v

(b)

Figure 10.16: (a) Common source amplifier, (b) Small-signal equivalent circuit.

e discharge path for C2 is through the resistance RL and the parallel combination of RD and
the Ro. erefore, the pole due to C2 is,

!p2 D
1

C2 ŒRL C ŒRD==Ro��
D

1

C2 ŒRL C ŒRD== .rd C .1C gmrd /RS /��
: (10.64)

When C1 and CS are shorted, the transfer function of the amplifier due to C2 is,

Av2 .!/ D
Avm .j!/

j! C
1

C2 ŒRL C ŒRD== .rd C .1C gmrd /RS /��

; (10.65)
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When C1 and C2 are shorted, the transfer function of the amplifier due to CS is,

Av3.!/ D

Avm

�
1

RSCS

�
j! C

rd C .RD==RL/C .1C gmrd /RS

RSCS Œrd C .RD==RL/�

: (10.66)

erefore, the pole location due to CS is,

!pS D
rd C .RD==RL/C .1C gmrd /RS

RSCS Œrd C .RD==RL/�
: (10.67)

It is typical to let C1 or C2 establish the dominant pole. e value for CS can be designed so that
!pS is significantly lower than the dominant pole frequency. Since one end of the emitter-bypass
capacitor, CS is ground, a large value chemical capacitor (electrolytic or tantalum) can be used.

Because of the inherently large input resistance of the FET, the common gate and common
drain amplifier analysis and design procedures follow that of the common source amplifier: in all
cases, each pole location is determined by calculating the pole location for each capacitor while
the others are shorted since the capacitors do not interact to establish the poles.

10.4 HIGH-FREQUENCYMODELSOFTHEBJT
Analysis of the response of BJT circuits at high frequencies is based on accurate modeling of
the frequency dependent performance of transistors. e dominant model used for small-signal
analysis of a BJT in the forward-active region, the h-parameter model as presented in 3 (Book 1)
does not contain frequency sensitive elements and is therefore invariant with respect to changes
in frequency. It is therefore necessary to introduce a new BJT model or to reinterpret an old
model to include frequency-dependent terms. Once again, the Ebers-Moll model provides an
excellent basis for creation of a simpler model in the forward-active region. In this modeling pro-
cess, it is necessary to begin with a slight variation of the Ebers-Moll model that was presented
in 3 (Book 1). As is shown in Figure 10.17, this presentation has added an additional base resis-
tance of small value, rb , to model the parasitic bulk resistance between the physical base terminal
contact and the active base region⁴ and a large output resistance, ro, to model reduced output
resistance due to early voltage .VA/ effects.

In the forward-active region and at low frequencies the Ebers-Moll Model of Figure 10.17
can be replaced by the linear two-port model shown in Figure 10.18. is model is known as the
hybrid-� model. It is similar to the h-parameter model used previously in this text, but has partic-
ular utility when frequency-dependent terms are included. Also of particular interest is the direct
correlation between the individual hybrid-� impedances and the corresponding circuit elements
in the Ebers-Moll model.
⁴Many models also include parasitic bulk resistances in series with the emitter and collector terminals. ese two resistances
typically have a much smaller effect on amplifier performance than rb and therefor will be ignored (assumed to be zero) in the
presentation provided here.
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Figure 10.17: e Ebers-Moll model of a BJT.
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Figure 10.18: Low-frequency Hybrid-BJT model.

e resistances rb and ro are directly carried from one model to the other, while r� and r� are
the forward resistance of the base-emitter junction and the reverse resistance of the base-collector
junction respectively.

e relationships between h-parameter and hybrid-� models can be obtained by appli-
cation of the two-port parameter tests as was performed (albeit on the Ebers-Moll model) in
Section 5.2 (Book 2).

e base-collector junction reverse resistance is extremely large .r� > 20M�/ and is typ-
ically ignored (left as an open circuit) the model. e simplified hybrid-� parameters are related
to the h-parameter model parameters by:
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gm D
hfe

r�
D

jIcj

�Vt
r� D ˇF

�Vt

jIcj
D
ˇF

gm
;

ro �
1

hoe
D

jVAj

jIcj
rb D hie � r� :

(10.68)

As will be seen in Section 10.7, the hybrid-� model is also useful in modeling FETs.
In addition to the modeling these purely resistive, second-order, low-frequency effects, the

diodes of the Ebers-Moll model are replaced by more complex, frequency-dependent models.
e frequency-dependent component of transistor behavior is based on the capacitive component
of p-n junction impedance. Once the capacitive nature of a p-n junction is known, a frequency
dependent model for a BJT can be obtained.

10.4.1 MODELINGA P-N JUNCTIONDIODEATHIGHFREQUENCIES
In the semiconductor region near a p-n junction under a voltage bias, there is a significant buildup
of electrical charge on each side of the junction. Since this charge buildup is dependent on the
voltage applied across the junction, there is a capacitance associated with the junction. is ca-
pacitance is strongly dependent on the doping densities of the two semiconductor regions and
the geometry of the junction. It is modeled as a capacitor shunting the dynamic resistance of the
junction (Figure 10.19).

d
r

i

C

▼

Figure 10.19: High-frequency model of a p-n junction.

In most electronic applications the p-n junction capacitance is dominated by the diffusion
of carriers in the depletion regions. A good analytic approximation of this depletion capacitance,
Cj , is given by:

Cj �
Cjo�

1 �
Vd

 o

�m ; (10.69)

where,

Cjo D small-signal junction capacitance at zero voltage bias,
 o D junction built-in potential, and
m D junction grading coefficient .0:2 < m � 0:5/.
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While theoretical derivations are possible for each of the capacitance parameters, it is more
common in practice to determine these parameters empirically. A plot the junction capacitance
as described by Equation (10.69) is shown in Figure 10.20. is expression is very accurate for
reverse biased junctions and for forward biased junctions where the junction current is small. In
most electronic applications, it provides an adequate level of modeling.⁵

Notice that the junction capacitance under reverse-biased conditions exhibits small varia-
tion while under forward-biased conditions it increases dramatically with bias voltage.

d
V

j
C

o
ѱ

jo
C

Figure 10.20: p-n junction depletion capacitance.

Example 10.3
If the zero-bias capacitance of a p-n junction is 5 pF and the built-in potential,  o, is 640mV,
determine the junction capacitance at junction voltages

Vd D �20V; �10V; �5V; �1V; 0:3V; 0:6V:

Assume the junction grading coefficient has value, m D 0:40.

Solution
Equation (10.69) yields:

Cj �
5 pF�

1 �
Vd

0:64

�0:40 :
e tabulated results are:

⁵High forward current modeling requires two modifications. Equation (10.69) indicates infinite capacitance at the built-in
potential: in actuality, the depletion capacitance decreases slightly for voltages above the built-in potential. An additional
capacitance term, the carrier diffusion capacitance, must also be included. is term is directly proportional to diode current.
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Vd D �20V Cj D 1.25 pF
�10V 1.62 pF
�5V 2.09 pF
�1V 3.43 pF
0:3V 6.44 pF
0:6V 15.2 pF

e small variation in the junction capacitance for a wide range of negative bias is evident.

10.4.2 MODELINGTHEBJTATHIGHFREQUENCIES INTHE
FORWARD-ACTIVEREGION

In order to model the BJT at high frequencies, the hybrid-� model of Figure 10.18 is altered
by shunting each p-n junction dynamic resistance with an appropriate junction capacitance. is
alteration is shown in Figure 10.21. Here, the base-emitter junction has been modeled by a capac-
itor, C� , in parallel with the junction forward resistance, r� . Similarly, the base-collector junction
has been modeled by a capacitor, C�.r� � 1/.
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Figure 10.21: e high-frequency hybrid-� model of a BJT.

Determination of the values of the two junction capacitances for a particular transistor is
necessary in order to complete the modeling process. While it is possible to analytically determine
these capacitances from the physical dimensions and properties of and individual transistor, it is
quite common to determine the values experimentally. e base-collector junction is reverse bi-
ased when the BJT is in the forward-active region, hence the junction capacitance,C�, is relatively
independent of quiescent conditions. Typical manufacturer data sheets provide a value for C� at a
given reverse bias (typically, VCB D 5 or 10V): further discussions of C� in this text will consider
it to be constant at the manufacturer’s supplied value.⁶ e forward-biased base-emitter junction

⁶C� exhibits the same variation with junction bias as is given in Equation (10.69). If data is available to determine the built-in
potential, o, and the junction grading coefficient,m, the values should be used to determine a better approximation forC�.
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exhibits greater variation with bias conditions: its junction capacitance, C� , must therefore be
determined with greater caution.

e value of the base-emitter junction capacitance, C� , for a BJT is usually determined
through a measurement of the variation with frequency of the BJT short-circuit current gain.
e transistor is placed in a test fixture as shown in Figure 10.22. e term “short-circuit” applies
to the collector-emitter port of the BJT which appears, in an ac sense, to be a short circuit. A plot
of the current gain frequency response is then determined experimentally.
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Figure 10.22: Measurement of the short-circuit current gain.

In order to correlate these measurements with the hybrid-� parameters, an ac equivalent
circuit of the test circuit must be created (Figure 10.23).
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Figure 10.23: Short-circuit current gain AC equivalent circuit.

e current gain is found to be:

AI .!/ D
ic.!/

ib.!/
D

�
ic

V�

��
V�

ib

�
; (10.70)

or:

AI .!/ D .gm/

 
r�

1C j!r�
�
C� C C�

�! D
hfe

1C j!r�
�
C� C C�

� : (10.71)
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is current gain expression is in the form of a single-pole low-pass frequency response. e
transistor short-circuit current gain has a low-frequency value of hfe and a 3-dB frequency of:

!3dB D
1

r�
�
C� C C�

� : (10.72)

A more common description of the results of Equation (10.71) depends on at the frequency at
which the current gain is unity, !T ,

!T D
hfe � 1

r�
�
C� C C�

� �
gm

C� C C�
: (10.73)

is unity-gain frequency, !T , is often referred to as the gain-bandwidth product: the product
of short-circuit current gain at a particular frequency and that frequency has constant value for
all frequencies greater than !3dB. Manufacturer’s data sheets will either provide a value for !T or
provide the gain at some other high frequency. e gain-bandwidth is given by:

!T D Am!m; (10.74)

where !m is the frequency at which the manufacturer made the gain measurement and Am is the
gain at that frequency.

Example 10.4
Given a Silicon npn BJT with parameters:

ˇF D 150,
VA D 350,
rb D 30�,
C� D 3 pF,
fT D 250MHz.

Determine an appropriate small-signal hybrid-� model for the transistor.

3V

20 V22 kΩ

1.2 kΩ

100 Ω
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Solution:
e first step in modeling any BJT is to determine the quiescent conditions. Since this is

the same transistor and circuit as Example 5.6 (Book 2), the quiescent conditions have already
been determined to be:

IC D 9:3mA and VCE D 7:90V:

e BJT is in the forward-active region and the hybrid-� model parameters can be determined
from Equations (10.68) and (10.73). Equation (10.68) yields the low-frequency parameters:

gm D
jIcj

Vt
D
9:30m
26m

D 358mS r� D
ˇF

gm
D

150

0:358
D 419:4�;

ro D
jVAj

jIcj
D

350

9:30m
D 37:6 k� rb D 30�:

Equation (10.73) yields the capacitor values:

C� D 3 pF

C� D
gm

!T
� C� D

0:358

2�.250M/
� 3 pF D 225 pF:

10.5 MILLER’S THEOREM
e process of determining the high-frequency poles for transistor amplifiers is not always a
simple process. In particular, the introduction of an impedance that connects amplifier input and
output ports adds a great deal of complexity in the analysis process. One technique that often helps
reduce the complexity in some circuits is the use of Miller’s theorem. Miller’s theorem addresses
the problem introduced by the interconnection of input and output ports.

Miller’s theorem applies to the process of creating equivalent circuits. is general circuit
theorem is particularly useful in the high-frequency analysis of certain transistor amplifiers at high
frequencies. It is based on the principle that two circuits appear equivalent if they have identical
voltage-current relationships at the ports where they interconnect with any adjoining circuitry.

Miller’s eorem generally states:

Given any general linear network having a common terminal and two terminals whose
voltage ratio, with respect to the common terminal, is given by:

V2 D AV1: (10.75)

If the two terminals of the network are then interconnected by an impedance, Z, an equiva-
lent circuit can be formed.is equivalent circuit consists of the same general linear network
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and two impedances; each of which shunt a network terminal to common terminal. ese
two impedances have value (Figure 10.24):

Z1 D
Z

1 � A
Z2 D

AZ

A � 1
(10.76)
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Figure 10.24: Miller equivalent circuits: (a) Interconnecting impedance, (b) Port-shunting
impedances.

Miller’s eorem can be verified by showing that the voltage-current relationships at each
port of the two circuits are identical. Notice that the voltage at each port of the linear network is
applied in the same manner so that the port currents, Iin and Iout, are unchanged by the attached
impedances. At the left port of Figure 10.24a, the input current, I1i , is given by:

I1i D Iin C
V1 � V2

Z
D Iin C

V1 � AV1

Z
: (10.77)

e input current of the equivalent circuit (Figure 10.24b is given by:

I1s D Iin C
V1

Z1
: (10.78)
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Using the relationship given in Equation (10.76), the input current expression becomes:

I1s D Iin C
V1
Z

1 � A

D Iin C
V1.1 � A/

Z
D I1i : (10.79)

Similarly, at the right port of Figure 10.24a, the output current, I2s , is given by:

I2i D Iout C
V2 � V1

Z
D Iin C

V2 � 1=AV2

Z
: (10.80)

e output current of the equivalent circuit (Figure 10.24b) is given by:

I2s D Iout C
V2

Z2
: (10.81)

Using the relationship given in Equation (10.76), the output current expression becomes:

I2s D Iout C V2

�
A � 1

AZ

�
D Iout C

V2 � 1=AV2

Z
D I2i : (10.82)

For these twoMiller equivalent circuits, the individual port voltage-current relationships are iden-
tical and the two circuits appear identical to any other circuitry that may be connected at these
two ports.

Replacement of the input-output interconnection is particularly useful in the analysis of
common-emitter and common source amplifiers. In these amplifiers, the voltage gain necessary
to invoke Miller’s theorem is easily attainable and the substitution produces significant reduction
in analysis complexity.

Example 10.5
e circuit shown consists of an OpAmp inverting amplifier bridged by a capacitor.

Determine the Miller equivalent circuit if the inverting amplifier is considered to be the
general linear network.

o
v

_

+

82 kΩ

i
v

10 kΩ

22 µF

+
_
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Solution:
e gain of the OpAmp inverter is given by:

A D
vo

vi
D �

82 k�
10 k�

D �8:2:

e two Miller impedances are given by:

Z1 D
Z

1 � A
D

1

j!.22 � 10�6/

1 � .�8:2/
D

1

j!.202:4 � 10�6/

and

Z2 D
AZ

A � 1
D

�8:2

�
1

j!.22 � 10�6/

�
�8:2 � 1

D
1

j!.24:68 � 10�6/
:

Z1 appears to be a 202:4�F capacitor and Z2 a 24:68�F capacitor.
e Miller equivalent circuit is given by:

o
v

_

+

82 kΩ

i
v

10 kΩ

24.68 µF
202.4 µF

+
_

10.6 HIGH-FREQUENCYRESPONSEOF SIMPLEBJT
AMPLIFIERS

At high frequencies, amplifier response is characterized by the midband gain and the high-
frequency poles. Each poles effects the frequency response curves by introducing a 20 dB/decade
attenuation which begins at the pole frequency. Once the midband gain of an amplifier has been
determined in the usual fashion, it is only important to determine the pole locations in order to
completely determine the amplifier high-frequency response.
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In this section, the four single-transistor BJT amplifier types are analyzed in order to de-
termine their high-frequency pole locations. Miller’s theorem is first applied to the common-
emitter configuration using the traditional approximation for the Miller gain. A more accu-
rate, frequency-dependent application of Miller’s theorem to the common-emitter and common-
collector configurations follows.e common-base configuration is analyzed using the techniques
developed in Chapter 5 (Book 2), and symbolic solutions to simultaneous equations are used for
the most complex case: the common-emitter amplifier with emitter degeneration (CE CRe)
case. As in all small-signal analysis, transistor quiescent conditions must be first calculated so
that the transistor parameters can be accurately determined. In order to focus discussion on pole
frequency determination, it is assumed that the quiescent analysis has been previously performed
and that the transistor parameters are well-known.

While the emphasis of this section is on analysis, the information gained in that analysis
is significant in the practice of design. Only with a secure knowledge of the effects of circuit
element values and transistor parameters on amplifier response can the designer make appropriate
adjustments to meet or exceed specifications.

10.6.1 COMMON-EMITTERAMPLIFIERHIGH-FREQUENCY
CHARACTERISTICS

emidbandACmodel of a typical common-emitter amplifier and its high-frequency equivalent,
which uses the hybrid-� BJT model, are shown in Figure 10.25.
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s
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ov

+
_

(b)

Figure 10.25: Common-emitter equivalent circuits: (a) Midband AC equivalent, (b) High-frequency
equivalent.

e use of the analysis techniques previously developed in this text for this circuit is made difficult
by the presence of the capacitor C�, which interconnects the input and output sections of the
amplifier. Miller’s eorem is particularly useful in reducing the analysis complexity for this case.
In Figure 10.25b, the shaded two-port network has two terminals for which the voltage gain is
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well-known:
A D

vo

v�
D �gm.ro==Rc/ D �gmR

0
c ; (10.83)

where R0
c is the equivalent load resistance including the output impedance of the BJT:

R0
c D ro==Rc : (10.84)

e Miller gain as expressed in Equation (10.83) is a first-order approximation: it is the product
of the transconductance, gm, and the collector resistance rather than the collector impedance. is
approximate application of Miller’s produces first-order approximations to the two pole frequen-
cies. As such, it estimates the lower-frequency, often dominant, pole accurately, but seriously
underestimates the higher-frequency pole. Still, much insight into amplifier frequency response
is gained through this Miller approach. An exact, frequency-dependent application of Miller’s
theorem is presented in the next Section 10.6.2.

e capacitor, C�, bridges the two terminals of the shaded two port network. Miller’s the-
orem replaces this bridging capacitor with equivalent capacitances that shunt the ports of the
network (Figure 10.26).

C C

B

E

C

+

_

b
r

S
R

C
R’r

V v
m
g

s
v

o

o

v

+
_

Figure 10.26: Miller’s theorem applied to a common-emitter amplifier.

e input capacitance, Ci , is the parallel combination of C� and the Miller input capacitance, C1:

Ci D C� C .1C gmR
0
c/C�; (10.85)

and the output capacitance, Co, is the Millers output capacitance, C2:

Co D C�

�
1C gmR

0
c

gmR0
c

�
: (10.86)

e voltage gain of the circuit is easily determined through typical phasor techniques. In this case,
the gain is the product of a voltage division at the input and a current source-impedance product
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at the output:

AV D
vo

vs
D

�
vo

v�

��
v�

vs

�
D

�
�gmR

0
c

1C j!CoR0
c

�0B@
r�

1C j!Cir�
r�

1C j!Cir�
CRs C rb

1CA : (10.87)

Algebraic manipulation yields the desired result:

AV D �gmR
0
c

�
r�

r� CRs C rb

��
1

1C j!CoR0
c

��
1

1C j!Ci fr�== .Rs C rb/g

�
: (10.88)

is gain has two simple poles at frequencies

!p1 D

�
1

Ci fr�== .Rs C rb/g

�
D

 
1˚

C� C C�
�
1C gmR0

c

�	
fr�== .Rs C rb/g

!
(10.89)

and

!p2 D

�
1

CoR0
c

�
D

1

C�

�
1C gmR

0
c

gmR0
c

�
R0
c

D
1

C�
�
1=gm CR0

c

� : (10.90)

Typical circuit element values imply that !p1 < !p2, but small signal-source resistance,
Rs , may reverse that relationship: both pole locations should always be checked. Typically, the
high-frequency response of a common-emitter amplifier is limited by Ci through the multiplica-
tive alteration of C� using Miller’s theorem. is increase in the input circuit capacitance and
the resulting decrease in pole frequency magnitude is called the Miller effect. e two pole loca-
tions, with the midband gain, determine the total high-frequency response of a common-emitter
amplifier.

Example 10.6
Determine the high 3-dB frequency for the common-emitter circuit shown. Assume a Silicon
npn BJT with parameters:

ˇF D 150,
VA D 350,
rb D 30�,
C� D 3 pF,
fT D 100MHz.
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10 V

200 Ω

220 kΩ

22 kΩ

3.0 kΩ

ov

s
v+

_

Solution:
e coupling capacitor is replaced by an open circuit to determine the BJT quiescent—they

are found to be:

IB D 10:45�A IC D 1:568mA VCE D 5:30V:

e hybrid-� parameters are then determined from these quiescent conditions:

gm D 60:31mS, r� D 2:487 k�, C� D 3:0 pF,
ro D 223:2 k�, rb D 30�, C� D 93:0 pF.

e source resistance, Rs , is the 200� resistor in parallel with the two biasing resistors; thus the
two pole frequencies are determined from Equations (10.89) and (10.90):

!p1 D
1˚

C� C C�
�
1C gmR0

c

�	
fr�== .Rs C rb/g

D 7:957Mrad=s .1:27MHz/

!p2 D
1

C�

�
1

gm
CR0

c

� D
1

3p

�
1

60:31m
C 2:96 k

� D 112:0Mrad=s .17:8MHz/ :

Clearly !p1 is a dominant pole and the high 3-dB frequency is:

fH � 1:27MHz:

10.6.2 EXACTCOMMON-EMITTERHIGH-FREQUENCY
CHARACTERISTICS

It has been found that Equations (10.89) and (10.90) accurately estimate the lower-frequency
pole, whichever it may be, but underestimate the higher-frequency pole.⁷ A frequency dependent
⁷T. F. Schubert, Jr., and E. M., Kim, “A Short Study on the Validity of Miller’s eorem Applied to Transistor Amplifier
High-Frequency Performance,” IEEE Transactions on Education, vol. 52, no. 1, pp. 92–98, Feb. 2009.
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application of Miller’s eorem removes the approximations inherent in the traditional applica-
tion of Miller’s eorem to transistor amplifiers. As such, the Miller equivalent circuit derived
by this frequency-dependent application is an exact performance equivalent and any performance
parameters derived apply exactly to the original the hybrid-� model of the circuit. Both poles and
the zero of the amplifier gain and input impedance are calculated exactly.

e Miller voltage gain, AM .!/, is given by the product of the output of the voltage-
controlled dependent current source, �gm, and the parallel combination of the Miller output
capacitance, Co, and the effective load resistance, R0

c D ro==Rc . As stated above, the Miller gain
is given in phasor domain as:

AM .!/ D
�gmR

0
c

1C j!R0
cCo

: (10.91)

However, the Miller output capacitance, Co, has also been shown to be a function of the Miller
gain:

Co D
1 � AM .!/

AM .!/
C�: (10.92)

Solving the above equation pair for the Miller gain, AM .!/, yields:

AM .!/ D

�gmR
0
c

�
1 � j!

C�

gm

�
1C j!R0

cC�
: (10.93)

e Miller voltage gain experiences a pole at �.R0
cCo/

�1 and a negative-phase zero (np-zero) at
gmC

�1
� . An np-zero has the same magnitude response as a typical zero, but the phase is inverted:

some sources in the literature associate an np-zero with negative-value components. In this case,
the np-zero is due to the Miller gain changing from a large negative, real quantity to positive
unity as frequency increases: there must be a total of 180ı of phase shift in the Miller gain at very
high frequencies.

e amplifier input capacitance, Ci , now takes on a frequency dependent characteristic:

Ci .!/ D C� C

26641C

gmR
0
c

�
1 � j!

C�

gm

�
1C j!R0

cC�

3775C�I (10.94)

and the input gain can be written as:

Ai .!/ D

�
r�

Rs C rb C r�

� �
1C j!R0

cC�
�

1C j!
˚
RiC� C

�
1C gmR0

c

�
RiC� CR0

cC�
	

C .j!/2
˚
RiR0

cC�C�
	 (10.95)

where
Ri D r�==.Rs C rb/:
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Notice that the zero of the input gain,Ai .!/, is at exactly same frequency as the pole of the
Miller gain, AM .!/. us, pole-zero cancellation occurs and any poles in the Miller gain become
irrelevant in the total gain expression (the np-zero, however, remains). is pole-zero cancellation
is not coincidental: it is the direct result of Miller gain poles appearing in the denominator of the
input gain, thusly becoming zeroes. e total voltage gain of the amplifier can now be expressed
as:

AV D

�
r�

Rs C rb C r�

� �
�gmR

0
c

� �
1 � j!

C�

gm

�
1C j!

˚
RiC� C

�
1C gmR0

c

�
RiC� CR0

cC�
	

C .j!/2
˚
RiR0

cC�C�
	 : (10.96)

Comparison of the expression for the Miller-derived gain and numerical solutions resulting
from node-voltage analysis yields exactly (to with the accuracy of the computation package) the
same results. e total gain expression retains the np-zero of the Miller gain at gmC�1

� and has
two poles.

Use of the quadratic formula leads to exact values of the pole frequencies:

!p1 D
�b C

p
b2 � 4a

2a
and !p2 D

�b �
p
b2 � 4a

2a
I

where (10.97)
b D RiC� C

�
1C gmR

0
c

�
RiC� CR0

cC� and a D RiR
0
cC�C�:

e complexity of these expressions can be reduced by noting that in essentially all practi-
cal common-emitter and common-source amplifiers 4a � b2, and a good approximation of the
square root terms can be made:

p
1 � " � 1 �

"

2
)

p
b2 � 4a � b �

2a

b
: (10.98)

e resultant approximate pole frequencies are:

!p1A �
�1

b
D

�1˚
C� C

�
1C gmR0

c

�
C�
	
Ri CR0

cC�
;

and (10.99)

!p2A �
�b

a
C
1

b
D

1

!p1ARiR0
cC�C�

� !p1A:

e Miller effect (multiplication ofC� by the quantity .1C gmR
0
c/ is still strongly apparent

in the expression for !p1A, however, the expression for !p2A takes a completely different form
than what is typically presented in the literature.

e input impedance for common-emitter amplifiers can be directly derived from the input
gain Ai .!/, replacing the term Ri by r� :

Zin D rb C
r�
�
1C j!R0

cC�
�

1C j!
˚
r�C� C

�
1C gmR0

c

�
r�C� CR0

cC�
	

C .j!/2
˚
r�R0

cC�C�
	 : (10.100)
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As a result, there is a true zero at �.R0
cC�/

�1 and the approximate poles are somewhat shifted
from those of the voltage gain:

!p1in �
�1

r�C� C
�
1C gmR0

c

�
r�C� CR0

cC�
;

and (10.101)

!p2in �
1

!p1inr�R0
cC�C�

� !p1in:

While the frequency-independent application of Miller’seorem does not lead to produc-
tive results concerning output impedance, the frequency-dependent approach leads to an exact
representation. e representation of the output impedance is somewhat difficult to obtain by
direct inspection; however, the évenin eorem leads to an appropriate expression:

Zout D
Open circuit voltage
Short circuit current

D
AV .!/

lim
RL!0

�
AV .!/

RL

� ;
or

Zout D
R0
c

˚
1C j!Ri

�
C� C C�

�	
1C j!

˚
RiC� C

�
1C gmR0

c

�
RiC� CR0

cC�
	

C .j!/2
˚
RiR0

cC�C�
	 : (10.102)

e output impedance also has a zero and two poles. Since the denominator of the output
impedance is the same expression as the voltage gain, the expressions for the pole frequencies
of the output impedance match those for the voltage gain. However, the output impedance pole
frequencies will depend on exactly where that impedance ismeasured. Particular attentionmust be
paid to the quantity R0

c D ro==Rc which depends on where the output impedance measurement
is taken (that is, what resistances make upRc) and may not be the same value as is used for voltage
gain.

Example 10.7
Determine the high-frequency poles for the common-emitter circuit of Example 10.6.

10 V

200 Ω

220 kΩ

22 kΩ

3.0 kΩ

ov
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_
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Solution:
e hybrid-� parameters were determined from the quiescent conditions in Example 10.6:

gm D 60:31mS, r� D 2:487 k�,
ro D 223:2 k�, rb D 30�,
C� D 93:0 pF, C� D 3:0 pF.

Also determined in Example 10.6 were the circuit parameters:

Rs D 200==220 k==22 k D 198�

Ri D r�==.Rs C rb/ D 208:8� R0
c D ro==3 k D 2:96 k�:

e poles can then be calculated to be:

!p1A D 7:428Mrad=s .1:18MHz/ !p2A D 811:3Mrad=s .129MHz/:

ere is definitely a dominant pole and the high 3-dB frequency consequently at that pole
frequency: 1.18MHz. Notice that this result compares nicely with the estimated 3-dB frequency
of Example 10.6 (1.27MHz).However, the estimated second pole as determined in Example 10.6
is drastically too low (0.86 decades low). If the location of the second pole is important, the poles
determined by the frequency-dependent Miller approach must be used.

10.6.3 COMMON-COLLECTORAMPLIFIERHIGH-FREQUENCY
CHARACTERISTICS

Miller’s eorem is a valid and useful technique when applied to common-collector amplifiers.
e simplified model of a common-collector amplifier and its high-frequency equivalent, using
the hybrid-� BJT model, are shown in Figure 10.27. e capacitor, C� , and the resistor, r� ,
bridge the input and output terminals of the amplifier. Miller’s theorem replaces these bridg-
ing impedances with equivalent impedances shunting the input and output ports of the network
(Figure 10.28). For simplicity of notation, the substitution R0

e D ro==Re has been made.
For this circuit, the Miller voltage gain is defined as:

AM .!/ D
vo

vB
: (10.103)

e Miller gain can be directly determined to be:

AM .!/ D
R0
e

R0
e CR�

1C j!R�C�

1C j!.R�==R0
e/C�

; (10.104)

where

R� D r�== .1=gm/ D
r�

1C gmr�
: (10.105)
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Figure 10.27: Common-collector circuits: (a) Simplified equivalent, (b) High-Frequency equivalent.
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Figure 10.28: Miller’s theorem applied to a common-collector amplifier high-frequency model.

e total amplifier voltage gain can then be written as the product of the input gain and the Miller
gain:

AV .!/ D
vo

vs
D

�
vB

vs

��
vo

vB

�
D Ai .!/AM .!/; (10.106)

where

Ai .!/ D
vB

vs
D

Zi

Zi CRS C rb
: (10.107)

Under the Miller transformations, the input impedance,Zi , becomes the parallel combination of
C� and the Miller input impedance:

Zi D
1

j!C�
==

�
r�

1C j!r�C�

1

1 � AM

�
: (10.108)
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After much manipulation and the standard substitution for the current gain, ˇ D gmr� ; the total
common-collector gain can be expressed as:

AV D

2664
�

R0
e

R0
eC

RS CrbCr�
1Cˇ

� �
1C j! r�C�

1Cˇ

�
1C j!

�
r�.R0

eCRsCrb/C� C.RsCrb/ŒR0
e.1Cˇ/Cr� �C�

RsCrbCr� CR0
e.1Cˇ/

�
C .j!/2

�
.RsCrb/R

0
er�C�C�

RsCrbCr� CR0
e.1Cˇ/

�
3775 :

is gain has a single zero at:

!z D �
1C ˇ

r�C�
; (10.109)

and, using the same quadratic approximations as for the common-emitter case, poles at:

!p1A �
�1

b
D �

Rs C rb C r� C .1C ˇ/R0
e�

Rs C rb CR0
e

�
r�C� C .Rs C rb/

�
r� C .1C ˇ/R0

e

�
C�
;

and (10.110)

!p2A � �
.Rs C rb CR0

e/r�C� C .Rs C rb/
�
r� C .1C ˇ/R0

e

�
C�

.Rs C rb/r�R0
eC�C�

� !p1A:

Since the zero lies, in frequency, between the two poles, it is typical to model a common-
collector amplifier as a single-pole amplifier using !p1A as the pole frequency:

!3�dB � !p1A � �
Rs C rb C r� C .1C ˇ/R0

e�
Rs C rb CR0

e

�
r�C� C .Rs C rb/

�
r� C .1C ˇ/R0

e

�
C�
: (10.111)

e input impedance can be directly obtained from the series combination of the BJT base
resistance, rb , and the Miller input gain:

Zin D rb CZi

D rb C

�
r� C .1C ˇ/R0

e

� �
1C

r�R
0
eC�

r� C .1C ˇ/R0
e

j!

�
1C

�
r�
�
C� C C�

�
C .1C ˇ/R0

eC�
�
j! C

�
r�R0

eC�C�
�
.j!/2

: (10.112)

e poles are again somewhat shifted from those of the voltage gain:

!p1in �
�1

r�C� C
�
1C gmR0

c

�
r�C� CR0

cC�
;

and (10.113)

!p2in �
1

!p1inr�R0
cC�C�

� !p1in:
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e output impedance also has a zero and two poles. Since the denominator of the output
impedance is the same expression as the voltage gain, the expressions for the pole frequencies
of the output impedance match those for the voltage gain. However, the output impedance pole
frequencies will depend on exactly where that impedance ismeasured. Particular attentionmust be
paid to the quantity R0

c D ro==Rc which depends on where the output impedance measurement
is taken (that is, what resistances make upRc) and may not be the same value as is used for voltage
gain.

10.6.4 COMMON-BASEAMPLIFIERHIGH-FREQUENCY
CHARACTERISTICS

e midband AC model of typical common-base amplifier and its high-frequency equivalent are
shown in Figure 10.29. Notice that there is no element bridging the input and output termi-
nals. It is not necessary to invoke Miller’s eorem in order to find the pole frequencies. e
capacitance-increasing Miller effect is not present in common-base amplifiers: the pole magni-
tudes are consequently at very high frequencies.
In order to simplify the analysis of this complex circuit, notice that the voltage across the resistor,
rb , is very small: both rb and the BJT base current are relatively small quantities. It is therefore
reasonable to assume the voltage at B’ is essentially AC ground and the voltage at the emitter is
given by:

ve � �v� : (10.114)
e output voltage is given by the product of the current source value and the impedance between
the collector and common:

vo D �gmv�

�
1

1C j!C�Rc

�
: (10.115)

In order to find the relationship between v� and vs , the currents are summed at the emitter
terminal of the BJT:

vs C v�

Rs
C gmv� C j!C�v� C

v�

r�
D 0: (10.116)

is expression can be solved for v� :

v� D

�
vs

Rs

�
Rs C gm C

1

r�

�
1C j!C�

�
1

Rs
C gm C

1

r�

� : (10.117)

Equations (10.105) and (10.107) are combined to form the total gain expression:

vo D �gm

0BB@ �
vs

Rs

�
1

Rs
C gm C

1

r�

�
1C j!C�

�
1

Rs
C gm C

1

r�

�
1CCA� 1

1C j!C�Rc

�
: (10.118)
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Figure 10.29: Common-base equivalent circuits: (a) Midband AC equivalent, (b) High-frequency
equivalent.

ere are two simple poles. e input pole is at frequency:

!p1 D
r� C gmr�Rs CRs

C�r�Rs
D
r� C .1C gmr�/Rs

C�r�Rs
: (10.119)

Since gmr� D ˇF , the expression can be further simplified:

!1 D
r� C .1C ˇF /Rs

C�r�Rs
�

ˇF

C�r�
D !T : (10.120)

e output pole is at frequency:
!p2 D

1

C�Rc
: (10.121)

Both poles are at very high frequencies: Common-base amplifier stages are not usually the fre-
quency limiting elements in a multistage amplifier.
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10.6.5 COMMON-EMITTERWITHEMITTERDEGENERATION (CE CRe)
CHARACTERISTICS

A typical common emitter amplifier with emitter degeneration is shown in Figure 10.30a. Here
the transistor is biased by évenin sources and resistances: they represent the total linear circuits
connected to the terminals of the transistor. Figure 10.30b is a small-signal ac equivalent of that
amplifier with the transistor replaced by its high-frequency hybrid-� model. While the BJT
hybrid-� model includes an output resistance, ro, that resistance, in typical common-emitter
applications, is large compared to RC CRE and will be ignored in this analysis.
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Figure 10.30: Common emitter equivalent circuits: (a) Driven by évenin sources, (b) High-
frequency equivalent.

e application of Kirchhoff ’s current law at the nodes B 0, E, and C respectively, pro-
duces the following set of equations that can be solved simultaneously in order to determine the
frequency response:

vs � vb

Rs C rb
C
ve � vb

r�
C .ve � vb/ sC� C .vo � vb/ sC� D 0

.vb � ve/ sC� C
vb � ve

r�
C gm .vb � ve/ �

ve

Re
D 0

.vb � vo/ sC� � gm .vb � ve/ �
vo

Rc
D 0:

(10.122)

Here frequency is represented by s D j!. Exact symbolic solutions for the voltage gain
AV D vo=vs take the form of the quotient of two second-order polynomials in s:

AV D
vo

vs
D
azs

2 C bzs C cz

aps2 C bps C cp
; (10.123)
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with denominator polynomial constants (note R0
s D Rs C rb):

ap D
�
R0
sRc CR0

sRe CRcRe
�
r�C�C�;

bp D

�
.1C gmr�/

�
R0
sRc CR0

sRe CRcRe
�

C

Cr�
�
R0
s CRc

� �
C� C r�

�
R0
s CRe

�
C� (10.124)

cp D R0
s C r� C .1C gmr�/Re;

and numerator polynomial constants:

bz D Œ.1C gmr�/RcRe C r�Rc� C� and cz D �gmr�Rc : (10.125)

e roots of the denominator polynomial lead to the poles of the gain and the roots of the nu-
merator lead to the zeros. Use of the quadratic formula on the polynomials gives exact values of
the pole and zero frequencies:

!1 D
�b C

p
b2 � 4ac

2a
and !2 D

�b �
p
b2 � 4ac

2a
: (10.126)

For all practical amplifiers of this topology, the first pole is usually considered dominant in
determining the cutoff frequency of the amplifier and common-emitter amplifiers with emitter
degeneration are typically modeled for this purpose by only a single-pole. Single-pole modeling
typically results in a slight underestimation of the 3-dB frequency response due to the first zero
being relatively near the dominant pole. When the emitter resistor is small, the second pole and
the first zero exchange order and single-pole modeling can slightly overestimate the 3-dB fre-
quency response due to the first zero being relatively near the dominant pole. When the emitter
resistor is small, the second pole and the first zero exchange order and single-pole modeling can
slightly overestimate the 3-dB frequency.

e complexity of the pole frequency expressions can be reduced by noting that in essen-
tially all practical common-emitter and common-source amplifiers, the pole polynomial constants
are such that b2 � j4acj, and a good approximation of the square root terms can be made:

p
1 � " � 1 �

"

2
)

p
b2 � 4ac � b

�
1 �

2ac

b2

�
D b �

2ac

b
: (10.127)

e pole frequencies can then be approximated by reasonable algebraic expressions

!p1A �
�cp

bp
D

�
�
R0
s C r� C .1C gmr�/Re

��
.1C gmr�/

�
R0
sRc CR0

sRe CRcRe
�

C r�
�
R0
s CRc

��
C� C r�

�
R0
s CRe

�
C�

and

!p2A �
�bp

ap
C
cp

bp
(10.128)

D
�
�
.1C gmr�/

�
R0
sRc CR0

sRe CRcRe
�

C r�
�
R0
s CRc

��
C� C r�

�
R0
s CRe

�
C��

R0
sRc CR0

sRe CRcRe
�
r�C�C�

� !p1A:
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e approximate 3-dB frequency can be cast in more familiar terms by noting that gmr� D

ˇF :

!3dB �
�
�
R0
s C r� C .1C ˇF /Re

��
.1C ˇF /

�
R0
sRc CR0

sRe CRcRe
�

C r�
�
R0
s CRc

��
C� C r�

�
R0
s CRe

�
C�
:

(10.129)
Here the Miller effect is evident in the multiplication of C� as is the widening of the

amplifier bandwidth with feedback (by increasing RE ). ese approximations increase the un-
derestimation of the 3-dB frequency somewhat over the exact single-pole estimation.

A comparison of bandwidth calculations for the typical small-signal amplifier of Fig-
ure 10.31a is shown in Table 10.1. In this example circuit, the quotient of polynomials repre-
sentation of gain as derived by the frequency-dependent form of Miller’s eorem is essentially
identical to the SPICE simulation with only �2% (1/100 decade) variation in the 3-dB frequency
and no more than 0.1 dB variation over the entire range of frequencies (Figure 10.31b). Single-
pole approximations to common-emitter with emitter degeneration amplifiers are common and
accurately estimate the high 3-dB frequency. In this case, the exact single pole estimate underes-
timated the 3-dB frequency by only �6.3% (�1/28 decade) while the approximate, single-pole
expression underestimates the 3-dB frequency, as compared to SPICE simulation, by only �14%
(�1/15 decade). A summary of the various high 3-dB calculations is given in Table 10.2, and the
one-pole frequency response plots are also shown in Figure 10.31.

20 V

PN2222A

50 Ω

13 kΩ

75 kΩ

270 Ω

1.5 kΩ

ov

s
v+

_

(a)

G
ai

n
 (

d
B

)

Frequency (MHz)

1
-5

0

5

10

15
Pole-zero

SPICE

Single pole

Approx. pole

10 100 1000

(b)

Figure 10.31: (a) Typical common-emitter amplifier, (b) Frequency responses characterizations.
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Table 10.1: Comparison of 3-dB frequencies for the common-emitter amplifier of Figure 10.31

 

3-dB frequency

SPICE

26.2 MHz

variation
- 2.4%

1/100 decade

- 6.3%

1/28 decade

- 14%

1/15 decade

25.6 MHz 24.6 MHz 22.5 MHz

two poles +

two zeros

single pole

(ωp1)

approx. pole

(ωp1a)

Table 10.2: Summary of BJT amplifier high-frequency pole locations

Amplifier Type Pole Locations (rad/s.)

 Note:  R'c = Rc // ro , R's = Rs + rb , Ri = r  // R's, and R'e = Re // ro 
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10.7 HIGH-FREQUENCYMODELSOFTHEFET
Analysis of the response of JFET and MOSFET circuits at high frequencies is based on accu-
rate modeling of the frequency dependent performance of the transistors. e FET models used
for signal analysis in the low to midband frequencies in the saturation region, as presented in
Chapter 4 (Book 1), do not contain frequency sensitive elements and are therefore invariant with
respect to changes in frequency. It is therefore necessary to introduce the high-frequency variant
of the model to include the frequency-dependent terms.

10.7.1 DYNAMICMODELS FORTHEFET
e current-voltage relationships of the JFET in Chapter 4 (Book 1) and the small-signal models
of Chapter 5 (Book 2) were derived only for voltages assumed to change slowly with time. For
high-frequency analysis, the relationships must be modified to include the following two effects:

1. e JFET structure acts as a parallel plate capacitor when viewed from the gate and source
terminals, with the gate and channel forming the two plates. e plate capacitor separation
is the width of the gate-to-channel junction depletion region. A capacitive current will flow
when there is a change in the gate-to-source voltage.

2. emajority carriers require a finite transition time to cross the source to gate channel. If the
gate voltage changes significantly during the time when the majority carriers are traversing
the channel, the static expression of the drain current becomes invalid.

ere is also a small capacitance in the region between the drain and source formed by the channel
and the two terminal regions.⁸ ere is an additional large gate-to-drain resistance, rgd, that for
all practical purposes is an open circuit. e frequency-dependent components are: Cgs—gate-to-
source capacitance, Cgd—gate-to-drain capacitance (sometimes called the overlap capacitance),
and Cds—drain-to-source capacitance. Since Cgs � Cds; Cds can usually be ignored.

e frequency dependent effects due to charge storage in JFETs occurs mainly in the two
gate junctions. e drain-source capacitance, Cds, is small and therefore does not appreciably
affect the high-frequency response of the FET. e two remaining capacitances can be modeled
as voltage dependent capacitors with values determined by the following expressions:

Cgs D
Cgso�

1C
jVGSj

 o

�m (10.130)

Cgd D
Cgdo�

1C
jVGDj

 o

�m (10.131)

⁸A detailed discussion of the capacitances for the JFET and MOSFET high frequency small signal model is beyond the scope
of this book. For more detailed descriptions, the reader is referred to the books (listed as references at the end of this chapter)
by M. S. Tyagi, P. R. Gray and R. G. Meyer, and P. Antognetti and G. Massobrio.
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where
Cgso; Cgdo are the zero-bias gate-source and gate-drain junction

capacitances, respectively, in Farads;
VGS; VDS are the quiescent gate-source and drain-source voltages, respectively;
m is the gate p-n grading coefficient (SPICE default D 0:5);
 o is the gate junction (barrier) potential, typically

0.6V (SPICE default D 1V).

e frequency dependent elements for the MOSFET can be obtained in the same manner
as the JFET. e gate-to-source capacitance Cgs is a function of the rate of change of gate charge
with respect to the instantaneous gate voltage. e effect of the electrostatic coupling between the
gate and the drain can be represented by the incremental gate-to-drain capacitance, Cgd. Since
both of these capacitances are effected by the gate voltage, the intrinsic capacitance formed by the
between the gate, oxide layer, and the channel is of critical interest. e capacitance formed by
the oxide layer at the gate is defined as

Cox D
"oxWL

tox
D C 0

oxWL; (10.132)

where Cox is the oxide capacitance formed by the gate and channel.
C 0

ox is the oxide capacitance per unit area.
"ox is the permittivity of the oxide layer (silicon oxide— SiO2: 3.9"o).
tox is the thickness of the oxide layer

(separation between the gate and channel).
W;L are the width and the length of the channel under the gate, respectively.

e permittivity of vacuum is, "o D 8:851 � 10�12 F=m. e oxide capacitance per unit area can
be calculated from physical parameters:

C 0
ox D

1

�

�
2IDSS

V 2PO

�
; for depletion MOSFETs (10.133a)

C 0
ox D

1

�
.2K/ ; for enhancement MOSFETs, (10.133b)

where � is the charge mobility (typically 600 cm2/V-s for n-channel, 200 cm2/V-s for p-channel.
For a MOSFET operating in saturation, the relevant capacitances for the small-signal

high-frequency model are,

Cgs D
2

3
Cox C CgsoW; (10.134)

and

Cgd D CgdoW; (10.135)
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where Cgso; Cgdo are the zero bias gate-source and gate drain capacitances, respectively, (typically
Cgso D Cgdo D 3 � 10�12 F=m), and are related to C 0

ox.

e capacitances in the high-frequency small-signal model of the MOSFET are relatively con-
stant over the frequency range. Note also that the MOSFET zero bias capacitance has dimensions
of F/m and in the JFET, it has units of F.

Although the values of the components are different, the JFET and MOSFET share the
same small-signal model arrangement shown in Figure 10.32.

dr dsC

gdC

gsC

+

_

gs
v

+

_

ovmg gsv

Figure 10.32: Accurate FET high-frequency model.

Since Cds is small compared to Cgs, the drain-source capacitance may be ignored in most analysis
and design situations, and the simplified model shown in Figure 10.33 may be used.

dr

gdC

gsC

+

_

gs
v

+

_

ovmg gsv

Figure 10.33: Simplified FET High-frequency model.

Circuit parameters, at specific bias conditions, can be obtained from the manufacturers’ data
sheets. e data is usually provided in terms of y-parameters. More specifically, the common-
source short-circuit input capacitance Ciss, reverse transfer capacitance Crss, and output capac-
itance, Coss are provided. ese manufacturer-specified capacitances are related to the high-
frequency small-signal model parameters by the following relationships:

Cgd � Crss (10.136)
Cgs � Ciss � Crss (10.137)
Cds � Coss � Crss: (10.138)
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e maximum operating frequency, !T , is the frequency at which the FET no longer am-
plifies the input signal: that is, the dependent current source gmvgs is equal to the input current.⁹
Using an analysis similar to that found in 10.4 to find the BJT maximum operating frequency,

!T D
gm�

Cgs C Cds
� : (10.139)

In general, BJTs have higher maximum operating frequencies than FETs. Two factors are respon-
sible for the lower frequency performance of FETs compared to BJTs:

• For a given area and operating current, the gm of silicon FETs is less than half of silicon
BJTs.

• In MOSFET structures, considerable capacitance is observed at the input due to the oxide
layer. In JFETs, semiconductor properties and physical dimensions of the device result long
channel lengths that reduce high-frequency performance.

Example 10.8
Given an enhancement NMOSFET with parameters:

K D 2:96mA=V2, VA D 150V, VT D 2V,
Ciss D 60 pF at VGS D 0V, Coss D 25 pF at VGS D 0V, Crss D 5 pF at VGS D 0V,
W D 30�m, L D 10�m,
� D 600 cm2=V � s D 0:6m2=V � s.

operating at ID D 5mA.

o
v
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_
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DD
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+ 10 V

L
R

1 kΩ

G2
R

15 kΩ

D
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2
C

1 kΩ
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R

100 Ω

10 µF

10 µF

s
v

+
_

Determine an appropriate small-signal model for the transistor and the ac equivalent of the circuit
shown.
⁹e overlap resistance, rgd , and the capacitances, Cgs and Cgd , allow for the existence of a significant input current at high
frequencies.
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Solution:
e first step to modeling any FET (or any transistor circuit) is to determine the quiescent

conditions. Since this is the same transistor and circuit as Example 5.12 (Book 2), the quiescent
conditions have already been determined to be,

VGS D 3:3V and ID D 5mA;

operating in the saturation region.
e transconductance is,

gm D 2
p
IDK D 2

q�
5 � 10�3

� �
2:96 � 10�3

�
D 7:7mS:

e drain-source resistance of the FET is,

rd D
VA

ID
D

150

5 � 10�3
D 30 k�:

e MOSFET capacitances provided are for zero bias conditions. erefore, the following zero
bias small-signal capacitors can be found:

Cgdo D Crss=W D 5=W pF=m
Cgso D .Ciss � Crss/=W D 55=W pF=m:

In saturation, the small-signal capacitances are,

Cgs D
2

3

�
2KWL

�

�
C CgsoW D 1:97 � 10�12

C 55 � 10�12
� 57 pF

Cgd D CgdoW D 5 pF:

e complete small-signal model of the circuit is shown below:
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10.8 HIGH-FREQUENCYRESPONSEOF SIMPLE FET
AMPLIFIERS

e high-frequency response of simple FET amplifiers is, as with BJT amplifiers, characterized
by the amplifier high-frequency pole locations. is section parallels the derivations for BJT am-
plifier topologies (Section 10.6): the analyses are similar, differing only in the transistor parameter
names and typical values. As in all small-signal analysis, transistor quiescent conditions must be
first calculated so that the transistor parameters can be accurately determined. In order to focus
discussion on pole frequency determination, it is assumed that the quiescent analysis has been
previously performed and that the transistor parameters are well-known.

10.8.1 COMMON-SOURCEAMPLIFIERHIGH-FREQUENCY
CHARACTERISTICS

A typical common-source amplifier and its high-frequency equivalent, which uses the hybrid-�
FET model, are shown in Figure 10.34.

ov
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+
_

(a)

gdC
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g
r

G
R

DRvv mg v
mg

i
v

ov

+
_

+

_

(b)

Figure 10.34: Common-source equivalent circuits: (a) Simplified equivalent, (b) High-frequency AC
equivalent.

e traditional application of Miller’s eorem to this circuit again reduces the complexity of the
analysis. e Miller gain can be approximated as:

A D
vo

v�
D �gm .rd==RD/ D �gmR

0
D; (10.140)

where R0
D is the equivalent load resistance including the output impedance of the FET:

R0
D D rd==RD: (10.141)

e Miller gain as expressed in Equation (10.140) is a first-order approximation: it is the prod-
uct of the transconductance, gm, and the collector resistance rather than the collector impedance.
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is approximate application of Miller’s produces first-order approximations to the two pole fre-
quencies. As such, it estimates the lower-frequency, often dominant, pole accurately, but seriously
underestimates the higher-frequency pole. An exact, frequency-dependent application of Miller’s
theorem is presented in the next Section 10.8.3.

Miller’s theorem replaces the bridging capacitor, Cgd, with equivalent capacitances that
shunt the ports of the network (Figure 10.35).
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Figure 10.35: Miller’s theorem applied to a common-source amplifier.

e input capacitance, Ci , is the parallel combination of Cgs and the Miller input capacitance,
C1:

Ci D Cgs C .1C gmR
0
D/Cgd (10.142)

and the output capacitance, Co, is the Millers output capacitance, C2:

Co D Cgd

�
1C gmR

0
D

gmR0
D

�
: (10.143)

e voltage gain of the circuit is easily determined through typical phasor techniques. In this case,
the gain is the product of a voltage division at the input and a current source-impedance product
at the output:

AV D
vo

vs
D

�
vo

v�

� �
v�

vs

�
D

�
�gmR

0
D

1C j! CoR0
D

� 
1

1C j! Ci
�
RG C rg

�! : (10.144)

is gain has two simple poles which, aftermaking the substitutionR0
G D RG C rg , can be shown

to be:

!p1 D
1

Ci .R0
G/

D
1�

Cgs C .1C gmR0
D/ Cgd

�
R0
G

(10.145)

and

!p2 D
1

CoR
0
D

D
1

Cgd

�
1C gmR

0
D

gmR
0
D

�
R0
D

D
1

Cgd
�
1=gm CR0

D

� : (10.146)
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Typical circuit element values imply that!p1 < !p2, but small signal-source resistance,RG ,
may reverse that relationship: both pole locations should always be checked.

10.8.2 EXACTCOMMON-SOURCEHIGH-FREQUENCY
CHARACTERISTICS

As is the case for the common-emitter amplifier, it has been found that Equations (10.145)
and (10.146) accurately estimate the lower-frequency pole, whichever it may be, but underes-
timate the higher-frequency pole. e frequency dependent application of Miller’s eorem re-
moves the approximations inherent in the traditional application of Miller’s eorem to transistor
amplifiers and determines both poles and the zero of the amplifier gain and input impedance ex-
actly.

e Miller voltage gain, AM .!/, is given by the product of the output of the voltage-
controlled dependent current source, �gm, and the parallel combination of the Miller output
capacitance, Co, and the effective load resistance, R0

D D rd==RD . As stated above, the Miller
gain is given in phasor domain as:

AM .!/ D
�gmR

0
D

1C j!R0
DCo

: (10.147)

However, the Miller output capacitance, Co, is a function of the Miller gain:

Co D
1 � AM .!/

AM .!/
Cgd: (10.148)

Solving the above equation pair for the Miller gain, AM .!/, yields:

AM .!/ D

�gmR
0
D

�
1 � j!

Cgd

gm

�
1C j!R0

DCgd
: (10.149)

e amplifier input capacitance, Ci , now takes on a frequency dependent characteristic:

Ci .!/ D Cgs C

26641C

gmR
0
D

�
1 � j!

Cgd

gm

�
1C j!R0

DCgd

3775CgdI (10.150)

and the input gain can be written as:

Ai .!/ D

�
1C j!R0

DCgd
�

1C j!
˚
R0
GCgs C .1C gmR0

D/R0
GCgd CR0

DCgd
	

C .j!/2
˚
R0
GR0

DCgsCgd
	 :

(10.151)
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When determining the total voltage gain, there is again pole-zero cancellation resulting in:

AV D

.�gmR
0
D/

�
1 � j!

Cgd

gm

�
1C j!

˚
R0
GCgs C .1C gmR0

D/R0
GCgd CR0

DCgd
	

C .j!/2
˚
R0
GR0

DCgsCgd
	 :

(10.152)
With resultant approximate pole frequencies:

!p1A �
�1

R0
GCgs C .1C gmR0

D/R0
GCgd CR0

DCgd
;

and (10.153)

!p2A �
1

!p1AR0
GR0

DCgsCgd
� !p1A:

10.8.3 COMMON-DRAINHIGH-FREQUENCYCHARACTERISTICS
Miller’s eorem can also be applied to common-drain amplifiers. e simplified model of a
common-source amplifier and its high-frequency equivalent, using the hybrid-� FET model, are
shown in Figure 10.27. e capacitor,Cgs, bridges the input and output terminals of the amplifier.
Miller’s theorem replaces this bridging capacitance with equivalent capacitancess shunting the
input and output ports of the network (Figure 10.37). For simplicity of notation, the substitution
R0
S D rd==RS has been made.

ov

i
V DD

V
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S
R

+
_

(a)

gsC

gdC
dr

g
r

G
v

G
R

SRv
mg v

v

i
v

ov

+
_

+
_

(b)

Figure 10.36: Common-drain equivalent circuits: (a) Simplified equivalent, (b) High-frequency AC
equivalent.

For this circuit, the Miller voltage gain is defined as:

AM .!/ D
vo

vG
: (10.154)
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e Miller gain can be directly determined to be:

AM .!/ D
R0
S

R0
S CRm

1C j!RmCgs

1C j!.Rm==R0
S /Cgs

; (10.155)

where
Rm D 1=gm and R0

G D RG C rg :

e total amplifier voltage gain can then be written as the product of the input gain and the Miller
gain:

AV .!/ D
vo

vi
D

�
vB

vi

��
vo

vB

�
D Ai .!/AM .!/: (10.156)

e derivation of AV .!/ follows that of Section 10.6.3 and results in a voltage gain with a zero
at

!zF D
�gm

C�
; (10.157)

and poles at

!p1F D
� .1C gmR

0
S /

.R0
G CR0

S / Cgs CR0
G Œ1C gmR0

S � Cgd
;

and (10.158)

!p2F �
�b

a
C
1

b

D �
.R0

G CR0
S / Cgs CR0

G Œ1� C gmR
0
S � Cgd

R0
GR0

SC�C�
� !p1F :

As is the case for common-collector amplifiers, the zero for common-drain amplifiers lies,
in frequency, between the two poles, it is therefore typical to model a common-drain amplifier as
a single-pole amplifier using !p1A as the pole frequency:

10.8.4 COMMON-GATEHIGH-FREQUENCYCHARACTERISTICS
e midband AC model of typical common gate amplifier and its high-frequency equivalent are
shown in Figure 10.37.
Common gate amplifiers are similar to common-base amplifiers in that they do not suffer from
performance reducing Miller effects. e bridging resistance, rd , does present problems in the
analysis of the circuit. One method of analysis that brings results fairly quickly for the common-
base circuit is the node-voltage method. At the drain node of the FET, Kirchhoff ’s current law is
applied:

voGd C vo.j!Cgd/C gmvgs C .vo C vgs/gd D 0: (10.159)

e shorthand notation of replacing inverse resistance with conductance (signified by the letter
“g” with the appropriate subscript) has been used to simplify analytic representation. At the source
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Figure 10.37: Common gate equivalent circuits: (a) Midband AC equivalent, (b) High frequency
equivalent.

node of the FET a similar operation is performed:

.vs C vgs/Gs C vgs.j!Cgs/C gmvgs C .vo C vgs/gd D 0: (10.160)

ese two nodal equations are combined (eliminating vgs) to form the gain expression for the
common gate amplifier:

AV D
vo

vs
D

Gs�
Gd C gd C j!Cgd

gm C gd

� �
Gs C gm C j! Cgs

�
� gd

: (10.161)

In this gain expression, it should be noted that the output resistance of the FET, rd , is typically
much larger than the circuit resistors Rs and Rd (as well as the inverse of gm). It is therefore
reasonable to approximate the gain expression of Equation (10.157) by ignoring the small negative
term in the denominator:

AV �
Gs .gm C gd /�

Gd C gd C j! Cgd
� �
Gs C gm C j! Cgs

� : (10.162)

is approximate gain expression for the common gate amplifier has poles at:

!p1 D
Rs

Cgs .1C gmRs/
; and !p2 D

1

Cgd .rd ==Rd /
: (10.163)

ese two poles are at very high frequencies: as with the common-base amplifier, the common
gate amplifier is not usually the frequency limiting element in a multistage amplifier.



806 10. FREQUENCYRESPONSEOFTRANSISTORAMPLIFIERS

10.8.5 COMMON-SOURCEWITHSOURCEDEGENERATION (CS CRs)
CHARACTERISTICS

Common-source amplifiers with source degeneration are analyzed in the same fashion as
common-emitter amplifiers with the exception that a different hybrid-� model is used for the
field effect transistor. An amplifier of this topology driven by évenin sources is shown in Fig-
ure 10.38a and its high-frequency ac equivalent is shown in Figure 10.38b. While a depletion-
mode n-channel FET is shown, the analysis is the same for all types of FET.
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R
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VGG
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ov
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_

(a)

gd
C

gs
C d

r

G
R G D

S
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gsv
gsv mg

in
v

ov

+
_

+

_

(b)

Figure 10.38: Common source equivalent circuits. (a) Driven by évenin souces (b) High-frequency
equivalent.

e application of Kirchhoff ’s current law at the nodes G;S , and D respectively, produces
the following set of equations that can be solved simultaneously in order to determine the fre-
quency response:

vin � vg

RG
C
�
vs � vg

�
s Cgs C

�
vo � vg

�
s Cgd D 0�

vg � vs
�
s Cgs C gm

�
vg � vs

�
C
vo � vs

rd
�
vs

RS
D 0�

vg � vo
�
s Cgd � gm

�
vg � vs

�
C
vs � vo

rd
�
vo

RD
D 0:

(10.164)

e exact symbolic solution for the voltage gain, AV D vo=vs , to this set of simultaneous equa-
tions take the form of the quotient of two second-order polynomials in s:

AV D
vo

vs
D
azs

2 C bzs C cz

aps2 C bps C cp
; (10.165)
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where the denominator polynomial constants are:

ap D .RGRD CRGRS CRDRS / rdCgsCgd

bp D Œ.1C gmrd / .RGRD CRGRS CRDRS /C rd .RD CRG/� Cgd

C ŒRGRD CRGRS CRDRS C rd .RG CRS /� Cgs

cp D RD C rd C .1C gmrd /RS ;

(10.166)

and the numerator polynomial constants are:

az D rdRDRSCgsCgd

bz D Œ.1C gmrd /RDRS C rdRD� Cgd CRDRSCgs

cz D �gmrdRD:

(10.167)

Exact pole and zero expressions can be found through the quadratic formula. As is the case with
common-emitter amplifiers, common-source amplifiers with source degeneration are typically
modeled by a single-pole. e complexity of the first pole expression can be similarly simplified
so that the approximate 3-dB frequency is given by:

!3dB �

ŒRDCrdC .1Cgmrd /RS �

Œ.1Cgmrd / .RGRDCRGRSCRDRS /� CgdC ŒRGRDCRGRSCRDRSC rd .RGCRS /� Cgs
:

(10.168)

In this new expression for high 3-dB frequency, the Miller effect is again evident in the multi-
plication of Cgd as is the widening of the amplifier bandwidth with feedback (by increasing RS ).

A summary of all derived FET amplifier high-frequency poles is given in Table 10.3.
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Table 10.3: Summary of FET amplifier high-frequency pole locations

Common-source 

(single pole)  

(use the smaller) 

' '

D G

1

1 R Rgs m gdC g C
or

D

1

1 'R
gd

m
g

C

Common-source 

(two poles) 

 
p1A ' ' ' '

G D G D

1

R 1 R R R
gs m gd gdC g C C

 
,
 

p1A' '

p1A G D

1

R R
gs gd

C C

Common-source 

with source 

degeneration 

D S

3 3 G S

R   1  R

1  R  R

d m d

m d gd d gs

r g r

g r R R C R R r C

3 G D G S D Swhere    R R + R R + R RR R

Common-drain 

'

S

' ' ' '

G S G S

1 R

R R R 1 R

m

gs m gd

g

C g C

Common-gate 
S

S

R

1 Rgs mC g

  , 
'

D

1

RgdC

Note:  
G G D D S SR' R ,R' // R ,and R' // R

g d d
r r r

Amplifier Type Pole Locations (rad/s.)

R R R

R R

R R R R R R

R R R R R R R R

R

R R R R R R

R R R R R R

R

R R R R

Example 10.9
Determine the high frequency poles for the amplifier shown.

e JFET parameters are:

IDSS D 6mA, VPO D � 4.7V,
VA D 100V,
Ciss D 4:5 pF at VGS D 0,
Crss D 1:5 pF at VGS D 0.
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ov
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1
C

1
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510 kΩ 1 kΩ

1 kΩ

3 kΩ

3 kΩ

12 V

Solution:
Find the quiescent conditions to determine if the JFET is in the saturation region: that is,

the bias condition must fulfill the following criteria:

VDS � VGS � VPO:

Solve for VGS by finding the voltage across RS . e drain current, ID , is

ID D IDSS

�
1 �

VGS

VPO

�2
D IDSS

�
1 �

.VG � VS /

VPO

�
:

Substituting VG D 0 and VS D IDRS in to the equation for the drain current above,

ID D IDSS

�
1C

IDRS

VPO

�2
:

Solving for ID in the second order equation above yields ID D 2mA. erefore,

VGS D VG � VS D 0 � IDRS D �0:002.1000/ D �2V:

e condition for operation in the saturation is confirmed:

VDS � VGS � VPO or 4 � �2 � .�4:7/ D 2:7:

e small-signal parameters for the JFET are:

gm D
�2ID

.VPO � VGS/
D

�0:002

.�4:7 � .�2//
D 1:48mS;

and
rd D

VA

ID
D

100

0:002
D 50 k�:
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e zero bias small-signal capacitors are:

Cgso � Ciss � Crss D 4:5 pF � 1:5 pF D 3 pF
Cgdo � Crss D 1:5 pF:

e small-signal capacitors at the quiescent point are:

Cgs D
Cgsos

1C
jVGSj

 o

D
3 � 10� 12r
1C

2

0:6

D 1:44 pF

Cgd D
Cgdos

1C
jVGDj

 o

D
1:5 � 10� 12r
1C

6

0:6

D 0:452 pF:

Substituting values in to the previously derived mathematical expressions for the poles of a com-
mon source with source degeneration amplifier yields:

!3dB �

ŒRDCrdC .1Cgmrd /RS �

Œ.1Cgmrd / .RGRDCRGRSCRDRS /� CgdC ŒRGRDCRGRSCRDRSC rd .RGCRS /� Cgs

D 443:8Mrad=sec.70:6MHz/:

10.9 MULTISTAGEAMPLIFIERS
Multistage amplifier frequency domain analysis is a combination of techniques shown in the pre-
vious sections of this chapter and the analysis and design techniques shown in Chapter 6 (Book 2).
e important concepts from Chapter 6 (Book 2) and the previous sections of this chapter that
will be used for multistage amplifier analysis are:

• e total voltage gain of a cascade-connected amplifier can be expressed as a product of
gains of the individual stages and simple voltage divisions.

• Each stage presents a load to the previous stage: its input resistance is part of the total load
that is apparent to the previous stage.

• e total input resistance or total output resistance may be modified by the interaction of
individual stages.

e analysis procedure used for designing multistage amplifiers is:
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• Perform midband gain analysis of the total circuit and of each stage taking into account the
load presented by the input resistance of the next stage.

• Perform low-frequency analysis of the circuit. In most cases, careful application of the time
constant approach will yield a good approximation of the low cutoff frequency.

• Perform high-frequency analysis using the high-frequency model of the circuit. When ap-
propriate, use Miller’s theorem to create a Miller’s equivalent circuit of the amplifier. In
most cases, the high-frequency output capacitance of the Miller’s equivalent model may be
ignored since the pole associated with the output capacitance is significantly higher than
the pole for the Miller’s equivalent input capacitance. is greatly simplifies analysis and
design without sacrificing a great deal of accuracy.

e analysis of multistage amplifier high-frequency response is greatly simplified by assuming
non-interacting capacitances in the high-frequency model. is assumption is particularly impor-
tant when determining the gain of an amplifier stage loaded by the input impedance of a fol-
lowing stage: often a complex impedance. at impedance is evaluated at midband frequencies,
thus eliminating the reactive component from the analysis. Using this assumption, the input
impedance of the amplifier stage at the output of the stage under consideration presents a purely
resistive load.

10.9.1 CAPACITORCOUPLINGBETWEENSTAGES
A common method found in multistage amplifier design makes use of coupling capacitors be-
tween stages. is method has the advantage that the bias condition of each stage is unaffected
by the others. e disadvantage is the potential degradation in amplifier low-frequency response:
that is, the low cutoff frequency may increase without careful selection of capacitor values. Ad-
ditionally, the use of coupling capacitors between stages does not lend itself to integrated circuit
implementations of the circuit since large capacitors require large areas, or “real estate,”¹⁰ on the
chip.

Figure 10.39 depicts a two stage common-emitter cascaded amplifier.
e AC model of the circuit is shown in Figure 10.40. Note that parallel resistors are replaced by
their equivalent: RB1 D RB11==RB21 and RB2 D RB21==RB22.

e midband gain of the circuit has been previously determined in Example 6.1 (Book 2).
While it is possible to recast the gain expressions using hybrid-� parameters, using h-parameter
expressions is equivalently valid. e midband gain has been determined to be:

AVm D

�
vo

vs

�
D

�
vb1

vs

��
vb2

vb1

��
vo

vb2

�
; (10.169)

¹⁰Area on integrated circuits are sometimes referred to as “real estate” since a chip may be designed with a near capacity of
number of components, and space may not be available.
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Figure 10.39: Two-stage common-emitter cascaded amplifier.
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Figure 10.40: AC model of Figure 10.39.

where

vi1

vs
D

Ri1

Ri1 CRS
; (10.170)

vo1

vi1
D �

hfe1 Œ.RC1==RB2 / ==Ri2�

hie1 C
�
1C hfe1

�
RE1

; (10.171)

vo

vo1
D �

hfe .RC2==RL/

Ri2
; (10.172)

where
Ri1 D hie1 C

�
1C hfe1

�
RE1 and Ri2 D hie2 C

�
1C hfe2

�
RE2:
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e low cutoff frequency is found by using the equations derived in Section 10.6 setting all high-
frequency transistor capacitors as open circuits and following the time constant analysis of Sec-
tion 10.3. e low-frequency poles of the amplifier in Figure 10.39 are:

!L1 D
1

C1
˚
RS C

�
RB1 ==

�
hie1 C

�
1C hfe1

�
RE1

��	 ; (10.173)

!L2 D
1

C2 ŒRC1 C .RB2 ==Ri2/�
; (10.174)

!L3 D
1

C3 .RC2 CRL/
: (10.175)

e high cutoff frequency is found using the equations summarized in Table 10.2 for each
stage, using the applicable transistor parameters and circuit element values. For this particular
circuit, both stages are common-emitter with emitter degeneration stages. In determining the
correct values for the resistances in the expressions, total évenin resistances at the amplifier
terminal must be used.

For the first stage, the appropriate resistances are:

R0
s D rb1

CRS==RB1

Rc D RC1==RB2==Ri2 (10.176a)
RE D RE1:

For the second stage, the resistances are:

R0
s D rb2 CRc1==RB2

Rc D RC2==RL (10.176b)
Re D RE2:

Example 10.10
e two stage cascade connected amplifier of Example 6.1 (Book 2) is shown. e two silicon
BJTs have characteristic parameters:

hfe � ˇF D 150; rb D 30�, VA D 350.
C�1 D C�2 D 3 pF,
!T1 D !T2 D 2�.400/Mrad/s.

Determine the low and high cutoff frequencies of the circuit.
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Solution:
e determination of the multistage amplifier performance follows the same basic steps

that were derived in Chapter 6 (Book 2):

1. Model the transistors with the appropriate DC model.

2. Determine the circuit quiescent conditions. Verify forward-active region for BJTs or satu-
ration region for FETs.

3. Determine transistor AC parameters from quiescent conditions.

4. Create AC equivalent circuit.

5. Determine the midband performance of each amplifier stage by:

(a) replacing the transistors by their respective AC models, or
(b) using previously derived results for the circuit topology.

6. Combine stage performance quantities to obtain total midband gain.

7. Perform low-frequency analysis to determine the low cutoff frequency using the small signal
AC model with all internal (high-frequency) capacitors open circuited.

8. Perform high-frequency analysis to determine the high cutoff frequency using the small
signal AC model including the internal (high-frequency) capacitors and short circuiting all
external (coupling and bypass) capacitors.
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9. Combine results of DC, midband, low-frequency and high-frequency analysis to obtain
total circuit performance.

e DC analysis was performed in Example 6.1 (Book 2) and the result for both collector
currents and collector-emitter voltages are:

IC D 2:427mA and VCE D 8:64V:

e quiescent conditions lead to hie D 1:624 k�.
e hybrid-� small signal parameters are:

r�1 D r�2 D hie � rb D 1:624 k � 30 D 1:594 k�

gm1 D gm2 D gm D
ˇF

r�
D

150

1594
D 94:1mS

C�1 D C�2 D
gm

!T
� C� D

0:0941

2�
�
400 � 103

� � 3 � 10�12
D 34:4 pF:

e AC model of the circuit is shown below:
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Where RB1 D RB11==RB21 and RB2 D RB12==RB22. Since VA is very large, the output resis-
tance, h�1

oe , is very large and can be approximated as an infinite resistance.
e low-frequency poles are:

!L1 D
1

C1
˚
RS C

�
RB1 ==

�
hie1 C

�
1C hfe1

�
RE1

��	 ) 10:9 rad=s D 1:74Hz

!L2 D
1

C2 ŒRC1 C .RB2 ==Ri2/�
D 88:9 rad=s ) 14:2Hz

!L3 D
1

C3 .RC2 CRL/
D 20:4 rad=s ) 3:25Hz:

e high-frequency poles for the common-emitter with emitter degeneration stages are found
using Table 10.2 with applicable circuit element values.



816 10. FREQUENCYRESPONSEOFTRANSISTORAMPLIFIERS

For the first stage, those resistances are:

R0
s D rb1 CRS==RB1 D 30C 100==10:5 k D 226�

Rc D RC1==RB2==Ri2 D 2:2 k==10:5 k==.1:62 k C 151 � 430/ D 1:77 k�
Re D RE1 D 430�:

For the second stage, the resistances are:

R0
s D rb1 CRc1==RB2 D 1:889 k�

Rc D RC2==RL D 1:212 k�
Re D RE2 D 430�:

e single high-frequency pole approximations for each stage are then calculated as:

!H1 D 108Mrad=s ) 17:3MHz
!H2 D 39:1Mrad=s ) 6:22MHz;

!L2 is the dominant low-frequency pole. e lower 3-dB frequency is 14.2Hz.
e high frequency poles are separated by a factor of k D 2:78 thus the high 3-dB frequency

is computed as described in Section 10.2.2:

fH D 6:22 MHz

vuut�.1Ck2/C

q
.1Ck2/

2
C 4k2

2
D 5:59MHz

10.9.2 DC (DIRECT) COUPLINGBETWEENSTAGES
In Example 10.10, the coupling capacitor between the two stages established the dominant low-
frequency pole, and therefore the low cutoff frequency. e effect of coupling capacitors between
amplifier stages on the low-frequency response can be eliminated by DC coupling the stages. e
midband analysis of a DC (or direct) coupled two-stage common source—common-collector
amplifier (Figure 10.42) was shown in Example 6.2 (Book 2).

e analysis of the midband gain, low cutoff frequency, and high cutoff frequency are found
in the manner as the capacitor-coupled amplifiers. Following the analysis of the capacitor coupled
multistage amplifier, and the results in Sections 10.6 and 10.8, the midband gain of the direct
coupled common source—common-collector amplifier is,

AVm D
vo

vs
D �

�
RG1

RG1 CROS

�
gm1rd .RD1 ==Ri2/

Œrd C .RD1 ==Ri2/C .1C �/RS1�

�
Ri2 � .hie/

Ri2

�
(10.177)

where
Ri2 D hie C

�
1C hfe

�
.RE2==RL/ :



10.9. MULTISTAGEAMPLIFIERS 817

ov
s

v +
_

+

_

1
C

2
C

L
R

OS
R

G1
R

S1
R

E2
R

D1
R

CC
V

1
Q

2
Q

Figure 10.41: DC (Direct) coupled two-stage amplifier.
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Figure 10.42: Common-emitter amplifier using Darlington pair.

e low-frequency poles are calculated from the product of the resistive discharge paths, calcu-
lated using évenin equivalent resistances, and the external capacitors:

!l1 D
1

C1 .ROS CRG/
(10.178)

!l2 D
1

C2

�
RL C

�
RE2 ==

hie C rd C .1C gm1rd /RS1

1C hfe

� � : (10.179)
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e high-frequency poles are found by applying Equation from Table 10.3 for the common
source stage and Table 10.1 for the common-collector stage. e appropriate circuit element
calculations for this circuit are:

Common source with source degeneration stage:

RD D RD1==Ri2

RS D RS1 (10.180)
RG D ROS==RG1:

Common collector stage

R0
s D rb CRD1==Ro1 (10.181)

R0
e � RE2==RL:

Each stage will, in this case, provide a single pole. e total amplifier high 3-dB frequency
is determined by appropriately combining those two poles.

10.9.3 DARLINGTONPAIR
e frequency response of amplifiers using theDarlington pairs can be found using the techniques
developed thus far in this chapter. Figure 10.42 is a common-emitter amplifier using the dual
common-collector composite transistor.

e complete hybrid-� small signal equivalent is shown in Figure 10.43. e analysis of
this amplifier follow techniques developed in this chapter. e midband gain is found by treating
all external (bypass and coupling) capacitors as short circuits and all high-frequency capacitors
as open circuits. e gain expression is a little different than those that have been derived thus
far. e midband gain has additive terms because the two dependent current sources, gm1v�1 and
gm2v�2, add to yield the amplifier output current. e midband gain of the amplifier is,

AVm D �

�
vi1

vs

�
.gm1v�1 C gm2v�2/RO ; (10.182)

where

RO D RC==RL for midband and high-frequency analysis,
RB D RB1==RB2;

and
vi1

vs
D

RB

RB CRS
:

e controlling voltages for the dependent current sources are,

v�1 D
vi1r�1

rb1 C .1C gm1r�1/ .rb2 C r�2/
; (10.183)
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Figure 10.43: All-frequency hybrid-� small signal model of Figure 10.42.

and

v�2 D
vi1r�2 .1C gm1r�1/

rb1 C r�1 C .1C gm1r�1/ .rb2 C r�2/
: (10.184)

e complete expression for the midband gain is found by substituting Equations (10.183)
and (10.184) into (10.182),

Avm D �
RBRO

RB CRS�
gm1r�1

rb1 C .1C gm1r�1/ .rb2 C r�2/
C

gm2r�2 .1C gm1r�1/

rb1 C r�1 C .1C gm1r�1/ .rb2 C r�2/

�
: (10.185)

e high-frequency model is simplified using Miller’s theorem to yield the high-frequency
Miller’s equivalent small signal model shown in Figure 10.44. e high-frequency Miller’s equiv-
alent output capacitances since the poles associated with these capacitances are not dominant.
e pole locations are found by determining the input impedance, Zi in Figure 10.44,

Zi D rb1 C

�
r�1





 1

j!Ci1

�
C .1C gm1/

�
rb2 C

�
r�2





 1

j!Ci2

��

D

�
rb1

�
1

r�1Ci1

C j!

�
C

r�1

r�1Ci1

��
1

r�2Ci2

C j!

�
C .1C gm1r�1/

�
rb2

�
1

r�2Ci2

C j!

�
C

r�2

r�2Ci2

��
1

r�1Ci1

C j!

�
�

1

r�2Ci2

C j!

��
1

r�1Ci1

C j!

� :

(10.186)
From Equation (10.186), the pole locations of the Darlington circuit in Figure 10.42 are,

1

r�1Ci1
and 1

r�2Ci2
: (10.187)
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Figure 10.44: High-frequency Miller’s equivalent circuit of Figure 10.43.

10.9.4 CASCODEAMPLIFIER
A cascode amplifier and its AC equivalent circuit are shown in Figure 10.45a and 10.45b where
Q1 forms the common-emitter stage and Q2 forms the common-base stage. e analysis of the
cascode amplifier is simplified because, as shown in Section 10.6.4, the common-base amplifier
high-frequency cutoff is very high. erefore, the common-base stage does not limit the high-
frequency operation of the cascode amplifier.
e analysis and design for the low cutoff frequency follows the technique demonstrated in the
previous sections of this chapter. Since the common-base stage does not affect the high-frequency
response of the cascode amplifier, the simplified high-frequency small signal model shown in
Figure 10.46 is used to find the dominant high-frequency pole.
e equivalent load resistance,RO , of the common-emitter stage is the évenin input resistance
of the common-base stage,

RO D
r�2 C rb2

1C gm2r�2
: (10.188)

e midband gain of the amplifier is,

AVm D �gm1RO D �gm1

�
r�2 C rb2

1C gm2r�2

�
: (10.189)

e Miller’s equivalent high-frequency input capacitor is,

Ci1 D C�1 C C�1 .1C gm1RO/ : (10.190)
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Figure 10.45: (a) Cascode amplifier, (b) AC model of the cascode amplifier.

e dominant high-frequency pole is determined from the following transfer function of the
input portion of the high-frequency small signal model of Figure 10.46,

v�1

vs
D

r�1==
1

j!Ci1

Ri C rb1 C

�
r�1 ==

1

j!Ci1

� D
1

C1 .Ri C rb1/

0BB@ 1

j! C
r�1 CRi C rb1

C1r�1 .Ri C rb1/

1CCA : (10.191)

erefore, the high cutoff frequency is,

!H D
r�1 CRi C rb1

C1r�1 .Ri C rb1/
: (10.192)

e other high-frequency poles are significantly higher in frequency than Equation (10.192) due
to the small value of the Miller’s equivalent output capacitance of Q1 and the very high cutoff
frequency of the common-base stage.



822 10. FREQUENCYRESPONSEOFTRANSISTORAMPLIFIERS

m1 ̟1

̟2 ̟2

̟2

̟1
g v

m2
g v

i
R

O
R

b1
r

o
v

+

_

v

+

_

v

+

_

r

r

b2
r

l1
C

L
R

s
v +

_

Figure 10.46: Simplified high-frequency model of the cascode amplifier.

10.10 CONCLUDINGREMARKS
Frequency response of amplifiers has been discussed in this chapter. e distortion caused by
frequency limitations was explored in the time domain. A demonstration of the effect of the
amplifier transfer function (gain and phase response) on the input signal confirmed that frequency
distortion can dramatically alter the output signal shape when compared to its input. Low and
high pass responses to a pulse input were explored and the concept of sag was introduced.

For multi-pole electronic systems, the difficulty in analytically finding the low and high
cutoff frequencies was resolved through simple formulas and approximations of the cutoff fre-
quencies. is technique utilized the dominant pole of electronic systems to readily determine
the cutoff frequency. Dominant poles were defined as those poles that are at least a factor of four
from the next nearest pole frequency.

e low-frequency response of an electronic amplifier was shown to be a function of the
external coupling and bypass capacitors of an amplifier. Although in some instances, the capacitors
interacted with each other in the circuit, a method was developed for approximating the low-
frequency poles by analyzing the poles associated with individual capacitors. is technique relied
on the dominant pole concept.

High-frequency hybrid-� models were developed for the BJT and the FET. e high-
frequency models included capacitances that determine the high-frequency operation of the de-
vices. Miller’s theorem was developed to simplify the analysis of the high-frequency models.

Single andmultistage amplifiers were analyzed using the techniques developed in this chap-
ter. e analysis and design of amplifiers followed the following procedure:

1. Model the transistors with the appropriate DC model.

2. Determine the circuit quiescent conditions. Verify forward-active region for BJTs or satu-
ration region for FETs.
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3. Determine transistor AC (hybrid-� or h-) parameters from quiescent conditions.

4. Create AC equivalent circuit.

5. Determine the midband performance of each amplifier stage by:

(a) replacing the transistors by their respective AC models, or
(b) using previously derived results for the circuit topology.

6. Combine stage performance quantities to obtain total midband gain.

7. Perform low-frequency analysis to determine the low cutoff frequency using the low-
frequency, small-signal AC model.

8. Perform high-frequency analysis to determine the high cutoff frequency using:

(a) e small-signal hybrid-� model including the internal (high-frequency) capacitors
and short circuiting all external (coupling and bypass) capacitors. Use Miller’s theorem
to simplify the small-signal model of the amplifier where appropriate.

(b) Previously derived expressions for the pole locations taking into account appropriate
loading conditions.

9. Combine results of DC, midband, low-frequency and high-frequency analysis to obtain
total circuit performance.

As an aid to the designer faced with a variety of sources for transistor data, Tables 10.4
(BJT), 10.5 ( JFET), and 10.6 (MOSFET) have been included. ese tables provide formulas for
transistor parameter conversion between the various models. e three parameter sets included
in the tables are: manufacturer’s data book parameters, hybrid-� model parameters, and SPICE
model parameters.
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Table 10.4: Conversion of BJT high-frequency modeling parameters

Source of Parameters Conversion to SPICE Parameters
Conversion to Hybrid-

Model Parameters 
(1)

(2)

Manufacturer’s Data 

Books 

fT @ ICT  – gain  

     bandwidth product 

Cobo @ VCB  

– output capacitance

Cibo @ VEB  

– input capacitance

   Cµ = Cobo 

T2 f

mg
C C

  CBV
CJC 1

m

oboC

  EBV
CJE 1

m

iboC

EB

T

1 V
TF

2 f 0.7

m

t
ibo obo

CT

V
C C

I

SPICE Models 

CJE  – zero-bias 

base-emitter 

capacitance 

CJC  – zero-bias 

base-collector 

capacitance 

TF  – forward transit 

time 

  

CB

CJC

V
1

m
C

TF+1.617 CJEmC g

  VJE  VJC    0.75 

  MJE  MJC  m  0.33 

IC Design Models 

Cieo  – zero-bias 

base-emitter 

capacitance 
Cµo  – zero-bias 

base-collector 

capacitance 

F  – forward transit 

time 

  

CBV
1

o

m

C
C

+1.617m F ieoC g C

  CJE = Cieo 

  CJC = Cµo 

  TF = F 

NOTES:    (1) Use the quiescent value of VCB in the equations in this column. 

(2) Use the data book values for VCB and VEB in the equations in this column. 

(3) fT is assumed to be approximately constant in this text:  It has a non-linear dependence on IC

(4) The values for  and m are device dependent.  The indicated values are the SPICE default 

values. 

(5) The subscripted junction voltages are for npn BJTs.   The equations for pnp BJTs are 

identical with these subscripts reversed. 

(6) C  is dependent on device parameters as shown below:  the approximation given uses SPICE 

default values 

MJE+1

CJE
TF 1 FC 1+MJE +MJE TF+1.617 CJE

VJE1 FC

BE
m m

V
C g g

ψ

ψ

ψ

ψ

ψ
ψ

ψ

ψ

̟

̟

̟

̟

̟

̟

̟

µ

µ

µ
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Table 10.5: Conversion of JFET high-frequency modeling parameters

Source of Parameters
Conversion to SPICE 

Parameters
Conversion to Hybrid-

Model Parameters 
(1)

Manufacturer’s Data Books 

Ciss @ VGS = 0  

– input short-circuit

capacitance

Crss @ VGS = 0  

– reverse transfer

capacitance

GDV
1

rss
gd m

C
C

GSV
1

iss rss
gs m

C C
C

CGD = Crss 

CGS = Ciss - Crss 

SPICE Models 

CGD  – zero-bias gate-drain 

capacitance 

CGS  – zero-bias gate-source 

capacitance 

GD

CGD

V
1

gd m
C

GS

CGS

V
1

gs m
C

PB =   0.6 

M = m  0.5 

IC Design Models 

Cgdo  – zero-bias gate-drain 

capacitance 

Cgso  – zero-bias gate-source

capacitance

GDV
1

gdo

gd m

C
C

GSV
1

gso

gs m

C
C

CGD = Cgdo 

CGS = Cgso 

NOTES:    (1) Use quiescent values for VGD and VGS in the equations in this column. 

(2)The values for  and m are device dependent.  Typical values are as  = 0.6 and m = 0.5. 

SPICE default values are  = 1.0 and m = 0.5 

(3) The subscripted junction voltages are for n-channel JFETs.  The equations for p-channel 

JFETs are identical with these subscripts reversed.

ψ
ψ

ψ

ψ

ψ

ψ

ψψ

ψ

ψ
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Table 10.6: Conversion of MOSFET high-frequency modeling parameters

Source of Parameters
Conversion to SPICE 

Parameters
Conversion to Hybrid-

Model Parameters 
(1)

Manufacturer’s Data Books 

Ciss @ VGS –  input capacitance 

Crss @ VGS   –  reverse transfer 

capacitance 

Coss @ VGS  – output 

capacitance 

Cgs  Ciss – Crss

Cgd  Crss

Cds  Coss – Crss 

WL2
TOX

3

OX

iss rssC C

2
CGDO

W

rssC

SPICE Models 

CGDO  – zero-bias gate-drain 

capacitance 

CGSO  – zero-bias gate-source 

capacitance 

VTO  – threshold voltage 

KP – transconductance

coefficient

Cgd = CGDO W

WL2

3 TOX

OX
gsC

Cds = 0

VT = VTO 

KP W
K

2 L

OX = 3.9 o  

= 3.9(8.51) pF/m 

 for SiO2 

IC Design Models 

Levels 2, 3, and 4  

PSpice Models 

Levels 2, 3, and 4 

PSpice Parameters 

Levels 2, 3, and 4 

PSpice Parameters 

NOTES: (1) Default geometry parameters in PSpice are L = W = 100 µm.  In SPICE2, 

the default geometry parameters are L = W = 1m.  Setting L = W = 100µm or less in the 

MOSFET model statement is recommended.  Failure to make L = W affects the constants 

used to determine the DC operating point. 

(2) The value for OX is dependent on the gate insulation material.  The value of 3.9 O is for 

SiO2 insulated gates only. 

(3) Integrated circuit parameters require the most accurate representation of the physical 

realization of the device.  Detailed device geometry information is required.   More complex 

models of the MOSFET are used in specifying parameters for IC design.  These models are 

beyond the scope of this text:  the simple model presented in this text does not have 

sufficient detail to be used for IC designs. 

ε

εε

ε

ε ε
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SUMMARYDESIGNEXAMPLE: PREAMPLIFIER FORALORANC
NAVIGATIONAL SYSTEMRECEIVER
e Loran C is a standard navigational system using pulsed information in the very low frequency
(VLF) range. Loran C is a form of hyperbolic navigational system that uses time differentials
between signals from a pair of widely separated transmitting sites to locate the coordinates of the
receiving station. e required operational frequency range is 10Hz to 1500 kHz. e output of a
“whip” antenna, with an output resistance of 2200�, must be amplified by a factor of C2 to C3 by
a preamplifier. is preamplified signal is applied to the 50� input of the Loran C navigational
receiver which will process the incoming information. e output impedance of the preamplifier
must match the input impedance of the Loran C receiver to eliminate potential signal reflections
which will corrupt the signal to the Loran C receiver. It is critical that the preamplifier is a non-
inverting amplifier which will preserve the duty cycle of the pulsed information detected by the
whip.

Design an inexpensive Loran C preamplifier to meet the stated requirements. A C9V
automotive/marine battery is used as the power source.

Solution:
e antenna signal is applied to a common-source n-JFET amplifier which will provide

moderate gain and high input resistance. However, since a common-source n-JFET amplifier
inverts the input signal, a unity gain inverter is required at the output. erefore, the output
of the FET stage is applied to a unity gain common-emitter npn BJT amplifier. To minimize
signal reflections, the output resistance of the BJT unity gain inverting amplifier must be 50�.
A possible topology for the amplifier is shown below:

o
v

S
R

“Whip” Antenna
D

R C
R

2.2 kΩ

51 Ω

G
C

G
v

D
v

G
R

SS
R
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C

1
Q 2

Q

E2
R

E1
R

O
C

E
C

i2
R

DD
+V

+9 V
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e BJT parameters are:

ˇF D 200, VA D 160V, rb D 30�,
Cibo D 8 pF at VEB D 0:5V, Cobo D 4 pF at VCB D 5V
fT D 300MHz.

e JFET parameters are:

IDSS D 6mA, VPO D �4:7 V, VA D 100V,
Ciss D 4:5 pF at VGS D 0V, Crss D 1:5 pF at VGS D 0V .

Initiate the design by selecting the DC operating point and synthesizing the circuit for operation
in the midband region. e FET biasing resistor RG is set arbitrarily large: RG D 510 k�.
Let ID D 1mA. Solve for VGS:

ID D IDSS

�
1 �

VGS

VPO

�2
;

or

VGS D VPO

 
1 �

s
ID

IDSS

!
D �4:7

 
1 �

r
1

6

!
D �2:8V:

Since VG D 0, then VS D 2:8V. is implies that the source resistor is,

RSS D
VS

ID
D

2:8

0:001
D 2:8 k�:

e midland gain of the amplifier is,

Av �
vo

vg
D

�
vd

vg

��
v�

vd

��
vo

v�

�
D Œ�gm1 .rd==RD ==Ri2/�

�
r�

r� C .1C gm2r�/RE1

�
Œ�gm2RC � ;

where

gm1 D
�2ID

.VPO � VGS/
D

�2 .0:001/

.�4:7 � .�2:8//
D 1:05mS

r� D .ˇF C 1/
�Vt

jIcj
� rb;

and

gm2 D
ˇF

r�
:
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For a gain of 2 to 3, the parallel combination of RD and Ri2 (assuming rd is very large, here
rd D 100 k�) is in the range,

2�
gm1gm2RC r�

r� C .1C gm2r�/RE1

� � RD ==Ri2 �
3�

gm1gm2RC r�

r� C .1C gm2r�/RE1

� :
Since the second stage will be designed to have an inverting gain magnitude of approximately
unity, the gain of the first stage can be designed to have a gain of �2:5.

e second stage will be designed for a collector current of 1mA. erefore,

r� D 5:2 k� and gm2 D 0:038S:

For an inverting unity gain second stage,

Av2 D
vo

vd
D

�
v�

vd

��
vo

v�

�
�

�
r�

r� C .1C gm2r�/RE1

�
.�gm2RC / :

But gm2RC D .0:038/ .51/ D 1:96. erefore, the expression r�
r� C.1Cgm2r� /RE1

� 0:5 for Av2 D

�1. is implies that .1C gm2r�/RE1 � 5:2 k�, or, RE1 D 26 � 27�.
e input resistance of the second stage is then,

Ri2 D rb C r� C .1C gm2r�/RE1 D 30C 5200C 5200 D 10:43 k�:

For an overall gain of �2:5 the RD is,

RD D 3:17 k� � 3:3 k�:

Checking the DC conditions of the first stages, the drain-source voltage of the JFET is,

VDS D VDD � ID .RD CRSS/ D 9 � 0:001 .3300C 2800/ D 2:9V:

To check that the FET is in the saturation region of operation,

VDS � VGS � VPO D �2:8 � .�4:7/ D 1:9V;

and since VDS D 2:9V > 1:9V, the FET is operating in the saturation region. e DC voltage
at the drain is VD D 9 � 0:001.3300/ D 5:7V.

Now solve for RE2 to bias the BJT at IC D 1mA,

RE2 D
ˇF

IC .ˇF C 1/

�
VD � V
2

�
�RE1 D

200

0:001 .201/
.5:7 � 0:7/ � 27 D 4:9 k � 4:99 k�:

is indicates that VCE � 4V.
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To confirm that the frequency response of the circuit is sufficient to receive the Loran C
signal, the device capacitances must first be found. For the FET,

Cgs D
Cgsos

1C
jVGSj

 o

D
Ciss � Crsss
1C

jVGSj

 o

D 1:3 pF;

Cgd D
Cgdos
1C

jVGSj

 o

D
Crsss

1C
jVGSj

 o

D 0:463 pF:

For the BJT,

CJC D Cobo

�
1C

VCB

0:75

�0:33
D 7:83 pF;

CJE D Cibo

�
1C

VEB

0:75

�0:33
D 9:47 pF;

TF D
1

2�fT
�
�Vt

jICT j

26664 CJE�
1 �

0:7

0:75

�0:33 C Cobo

37775 D 460 ps;

and

C�2 D
CJC�

1C
VCB

0:75

�0:33 D 4:5 pF;

C�2 D
gm2

!T2
� C�2 D 15:9 pF:

e high frequency response is found by using Tables 10.1 and 10.3. e common source
amplifier has poles at:

!p1A �
�1

R
0

GCgs C
�
1C gmR

0

D

�
R

0

GCgd CR
0

DCgd

!p2A �
1

!p1AR
0

GR
0

DCgsCgd
� !p1A:

While the common-emitter with emitter degeneration amplifier has a pole at:

!CE D
ŒR0

SCr�C .1CˇF /RE �

Œ.1CˇF / .R0
SRCCR0

SRECRCRE / Cr� .R0
SCRC /� C�Cr� .R0

SCRE / C�
:
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e high-frequency poles are calculated to be:

!p1A D 130Mrad=s ) 20:7MHz;
!p2A D 2:20Grad=s ) 3:5GHz;
!CE D 24:3Mrad=s ) 3:87MHz:

ere is clearly a dominant pole and the high frequency cutoff (� 3:87MHz) is more than double
the required 1500 kHz: the high frequency cutoff meets specification.

e specifications require a low frequency cutoff of 10Hz. erefore, design all low fre-
quency poles at 5Hz or less.

!L1 D 10� D
1

C1 .RS CRG/
) C1 D 3182 pF � 3300 pF;

and let CE D 4700�F.
e design is now complete.

10.11 PROBLEMS
10.1. A rectangular pulse of duration 10�s is the input to an amplifier described by a single

high-frequency pole. Plot the amplifier output for the following locations of that single
pole:

(a) 10MHz
(b) 1MHz
(c) 100 kHz

10.2. e output voltage response of an amplifier to a input consisting of a unit voltage step is
shown. Assume the high-frequency response is characterized by a single pole. Determine:

(a) e voltage gain of the amplifier.
(b) e high 3-dB frequency of the amplifier.

0

1

2

3

4

5

0 t (msec) 0.01
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10.3. A rectangular pulse of duration 10ms is the input to an amplifier described by a single
low-frequency pole. Plot the amplifier output for the following locations of that single
pole:

(a) 1Hz
(b) 10Hz
(c) 100Hz

10.4. e response of a unity-gain buffer to a 100Hz square wave with 5V amplitude is shown.
If the low-frequency response is characterized by a single pole, determine the low 3-dB
frequency of the unity-gain buffer.

3

2

1

0

1

2

3

4

5

0 t

10.5. e low-frequency response of an amplifier is characterized by three poles of frequency
30Hz, 10Hz, and 2Hz and three zero-frequency zeroes. Calculate the lower 3-dB fre-
quency, fL, using the following techniques:

(a) Dominant pole approximations.
(b) Root-sum of squares approximation (Equation (10.25)).
(c) Compare results to exact calculations.

10.6. An audio amplifier is described by a single low-frequency pole, fL D 100Hz, and a single
high-frequency pole, fH D 20 kHz.

(a) Sketch the response of this amplifier to square waves of frequency:

i. fsq D 250Hz
ii. fsq D 4 kHz

(b) Using simple, first-order OpAmp filters to model the amplifier, use SPICE to de-
termine the response of the amplifier to these same square waves.

(c) Compare results of parts a) and b).
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10.7. A particular amplifier can be described as having a midband gain of 560, three high-
frequency poles at the following frequencies:

fp1 D 25 kHz fp2 D 75 kHz fp3 D 150 kHz;

and a complex-conjugate pair of low-frequency poles (� D 0:6) with resonant frequency:

fo D 100Hz:

(a) Draw the idealized Bode magnitude and phase plots. On the graph label all slopes
and use a small circle to indicate where the slope changes. Compare these straight-
line approximate curves to exact curves (use a software package to generate the exact
curves).

(b) Use dominant-pole analysis to estimate the high and low 3-dB frequencies. Com-
pare these estimates to exact calculations.

10.8. e BJT is the given circuit is described by:

ˇF D 200 and VA D 150V:

(a) Determine the location of the three low-frequency poles.
(b) Which poles can be considered dominant?
(c) Determine the low 3-dB frequency of the circuit.
(d) Verify results using SPICE.

s
v+

_

ov50 Ω 2 µF

100 µF

4.7 µF

68 kΩ 1.2 kΩ

3.3 kΩ180 kΩ

2.7 kΩ

24 V

10.9. For the circuit shown, find the low 3-dB frequency and the midband voltage gain. Con-
firm using SPICE.
e transistor is described by:

ˇF D 200;

fT D 600MHz; and
VA D 200V:
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s
v

+

_

+

_

ov

47 µF

20 kΩ

S
C

B1
R

2.2 kΩ
B2
R

1 kΩ
L
R

100 Ω
E
R

1
Q

1 kΩ
C
R

+10 V

10.10. e design goals for the amplifier shown include maximum symmetrical output voltage
swing and a low 3-dB frequency of 70˙ 2Hz. e Silicon BJT is described by:

ˇF D 150;

VA D 300V:

Complete the circuit design: use SPICE to verify compliance with the design goals.

s
v+

_

ov
50 Ω

B1
R

B1
R

1
C

E
C

1.5 kΩ

120 Ω

20 V

10.11. For the circuit shown below, find the midband voltage gain and low 3-dB frequency. e
transistor has

ˇF D 100;

fT D 600MHz; and
VA D 200V:

Let RB1==RB2 D 10 k�.
Confirm results using SPICE.



10.11. PROBLEMS 835

s
v

+

_

+

_

ov

1 µF

100 Ω S
C

B1
R

B2
R

E
R

S
R

1
Q

1 kΩ

+6 V

10.12. For the circuit shown, find the midband voltage gain. Complete the design to achieve a
low 3-dB frequency of 40Hz. e transistor has

ˇF D 200 and
VA D 200V:

s
v

+

_

+

_

ov

180 kΩ

S
C

O
CB1

R

22 kΩ
B2

R
10 kΩ

L
R

E
R

E
C

1
Q

10 kΩ
C

R

+12 V

10.13. For the circuit shown below, find the low 3-dB frequency and the midband voltage gain.
e transistor is described by:

VPO D �4V;
IDSS D 8mA; and
VA D 200V:

Confirm results using SPICE.
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+

_

ov

+

_

sv

20 kΩ

2.7 kΩ

S
C

D
R O

C

1
Q

S
R

100 kΩ
G
R 4.02 kΩ

L
R

40 Ω
SS1
R

422 Ω
SS2
R

+20 V

0.33 µF

1 µF

SS
C

10 µF

10.14. e design goals for the circuit shown include a low 3-dB frequency , fL, at 80Hz. e
MOSFET has parameters:

IDSS D 5mA;
VPO D �2V;
VA D 150V:

(a) Complete the design by specifying capacitor values that will accomplish the design
goal to within ˙5%.

(b) Compare the results to SPICE simulation.

s
v+

_

ov75 Ω

330 Ω
S

C

L
C

1 kΩ

2 kΩ

10 V

10.15. e design goals for the circuit shown include a low 3-dB frequency , fL, at 50Hz. e
MOSFET has parameters:

K D 2:5mA=V2;
VT D 1:5V;
VA D 120V:
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(a) Complete the design by specifying capacitor values that will accomplish the design
goal to within ˙5%.

(b) Compare the results to SPICE simulation.

s
v+

_

ov60 Ω

180 Ω
S

C

L
C

1
C

1 kΩ

2 kΩ

820 kΩ

220 kΩ

10 V

10.16. Design an n-JFET common-source amplifier for a low 3-dB frequency of 40Hz with a
midband voltage gain of �2. e input resistance of the amplifier is 100 k�. e output
resistance is 10 k�. A power supply voltage of 12V is available. e Q-point is defined
by: VDS D 6V and VGS D �1V. e transistor parameters are:

IDSS D 5mA; VPO D �4V; and VA D 150V:

10.17. e Silicon BJT in the circuit shown has parameters:

ˇF D 120;

VA D 200:

(a) Determine a realistic minimum value for the capacitor C so that a 75Hz square
wave will have will experience no more than 5% sag.

(b) Determine the midband gain for the circuit.
(c) Determine the low 3-dB frequency using the capacitor chosen in part a).

s
v+

_

ov

100 Ω C

2.2 kΩ 2.7 kΩ

82 kΩ9.1 kΩ

20 V

10.18. e design goals for the circuit shown include a lower 3-dB frequency, fL, at 100Hz.
e Silicon BJT has parameters: ˇF D 150 and VA D 350V.
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(a) Complete the design by specifying capacitor values that will accomplish the design
goal to within ˙ 5%.

(b) Sketch the Bode voltage gain plot for the amplifier.
(c) Compare results to SPICE simulation.

s
v+

_

ov
50 Ω 1

C

E
C

2 kΩ82 kΩ

12 kΩ

470 Ω

15 V

10.19. e design goals for the circuit shown include the requirement that a 100Hz square
wave will have will experience no more than 4% sag. e Silicon BJT has parameters:
ˇF D 160 and VA D 150V.

(a) Complete the design by specifying capacitor values that will accomplish the design
goal to within ˙ 5%.

(b) Compare results to SPICE simulation.

s
v+

_

ov
50 Ω

12 kΩ 470 Ω

2 kΩ82 kΩ

15 V

1
C

E
C

10.20. e zero-bias capacitance of a p-n junction is 2 pF and the built-in potential,  o, is
780mV, Assume the junction grading coefficient has value, m D 0:35.

(a) Plot the junction capacitance for the range of junction capacitances, �10V � Vd �

0:75V.
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(b) If the capacitance value at Vd D �6V is used as a reference, determine themaximum
% variation in the capacitance over the range �10V � Vd � �2V.

10.21. A Silicon BJT is described by the following parameters:

ˇF D 160, VA D 200V, rb D 10�,
C� D 2:5 pF, fT D 160MHz.

Determine the high-frequency hybrid-� model for the BJT under the following bias
conditions:

(a) Ic D 2mA.

(b) Ic D 5mA.

10.22. e Silicon BJT is the circuit shown is described by:

ˇF D 140VA D 133V; rb D 12�;

C� D 3 pF; fT D 120MHz:

(a) Determine the high-frequency hybrid-� model for the BJT.

(b) Determine the high 3-dB and low 3-dB frequencies for the given circuit.

s
v+

_

ov75 Ω

12 kΩ 470 Ω

2 kΩ82 kΩ

16 V

4.7 µF

10.23. e Silicon BJT in the circuit shown is described by the following parameters:
ˇF D 120, VA D 160V,
rb D 25�,
C� D 3:5 pF, fT D 225MHz.

Determine the high-frequency hybrid-� model for the BJT.
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68 kΩ

3.3 kΩ180 kΩ

1.2 kΩ

24 V

82 µF

10.24. e transistors in the circuit shown are identical and have the following characteristics:

ˇF D 200; fT D 600MHz;
VA D 200V; Cobo D 2 pF:

(a) Find the midband voltage gain.

(b) Find the high 3-dB frequency.

(c) What is the largest peak-to-peak swing attainable with this circuit?

s
v

ov

+

_

+

_

100 Ω

3.3 kΩ
S
CS

R

C1
R

2.2 kΩ

E1
R

1 kΩ

C2
R

270 Ω

E2
R

2.2 kΩ

E1
R

O
C

E
C

1
Q

2
Q

+12 V

CC

V

1 µF

1 µF

33 µF
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10.25. Complete the design of the circuit shown for maximum symmetrical swing in the mid-
band frequency range. e transistor is described by:

ˇF D 180; fT D 600MHz; Cobo D 8 pF;
VCE D 2:5V; and VA D 200V:

(a) Find the high 3-dB frequency. Confirm using SPICE.

(b) Compare a) to the SPICE frequency response for the small-signal model of the
circuit.

(c) Compare b) to the SPICE frequency response found when using the Miller’s equiv-
alent model of the transistor.

CC
V

22 µF

33 µF

47 µF

s
v

+

_

+

_

+

_

ov

51 Ω

750 Ω

O
CC

I

S
R

S
C

B2
R

L
R

CE
V

E
R

E
C

1
Q

510 Ω
C
R

18 kΩ
B1
R

+15 V

10.26. Determine the high and low 3-dB frequencies for the circuit shown. e Silicon BJT is
described by:

ˇF D 150, VA D 300V,
rb D 20�, C� D 3 pF,
fT D 200MHz.

Sketch a Bode voltage gain plot for the circuit.
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s
v+

_

ov50 Ω

13 kΩ 120 Ω

1.5 kΩ75 kΩ

20 V

47 µF

10.27. For the circuit shown, FET is described by:

IDSS D 5mA, VPO D �2V,
VA D 150V,
Crss D 6:5 pF, Ciss D 35 pF

(a) Determine the high 3-dB frequency for the voltage gain.
(b) Remove the capacitor shunting the resistor at the FET source (the 220�F) and

determine the high 3-dB frequency.
(c) Comment on results.

50 Ω

220 µF

s
v+

_

ov

330 Ω1.5 MΩ

2.2 kΩ

15 V

10.28. Complete the design of the amplifier shown for a Q-point defined by VGS D 5V.

(a) Find the low and high 3-dB frequencies.
(b) Simulate the design using SPICE.
(c) Compare simulation in b) to a simulation of the small-signal equivalent circuit of

the amplifier.
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(d) In c), plot the voltage across all of the capacitors (including the device capacitances)
and comment on the results.

e transistor parameters are: K D 0:3mA=V2; VT D 2V; VA D 150V; Ciss D 12 pF,
and Crss D 2 pF.

DD
V

1µF

10 µF

1 µF

s
v

+

_

+

_

+

_

ov

51 Ω

1.5 kΩ

1.5 kΩ

O
C

S
R

S
C

G2
R

SS
R

DS
V

SS
R

SS

C

1
Q

3.48 kΩ

10 kΩ

D
R

G1
R

+20 V

10.29. e JFET in the circuit shown is described by parameters:

VPO D �1:8V, IDSS D 4mA, VA D 90V,
Cgso D 3:5 pF, Cgdo D 1:5 pF.

Determine the high-frequency model of the JFET for the following values of the gate
voltage:

(a) Vg D 0V.

(b) Vg D 1V.

gV

3.9 kΩ

270 Ω

24 V

10.30. Determine the high and low 3-dB frequencies for the circuit shown.e JFET transistors
have parameters,
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VPO D �2V, IDSS D 5mA,
VA D 200V,
Cgso D 3 pF, Cgdo D 1 pF.

(a) Sketch a Bode voltage gain plot for the circuit.

(b) Verify results using SPICE (note: SPICE Parameters, CGS D Cgso and CGD D

Cgdo).

s
v+

_

ov

240 Ω300 Ω

100 Ω

3.9 kΩ4.7 kΩ

1.15 MΩ 1.2 MΩ

22 nF 22 nF

20 V

10.31. e circuit below was designed with identical transistors with the following characteris-
tics:

IDSS D 10mA; VPO D �2V; VA D 100V; Crss D 7:3 pF; Ciss D 26:5 pF:

Determine:

(a) the midband voltage gain.

(b) low 3-dB frequency.

(c) high 3-dB frequency.

(d) Verify the results using SPICE.
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DD
V

1µF
1 µF

33 µF

1 µF

s
v

__

ov

51 Ω
S
R S

C

C
C

O
CD1

R

1
Q

1
Q

4.7 kΩ

G1
R

510 kΩ
SS1
R

1 kΩ
G2
R

510 kΩ
SS2
R

510 Ω

SS1
C

33 µF

SS2
C

D2
R

2.7 kΩ

L
R

2.7 kΩ

+15 V

10.32. Complete the design of the circuit shown by determining a value forRd that will achieve
a quiescent output voltage of 5V. Determine the high and low 3-dB frequencies for the
completed circuit. e transistors are described by:

JFET: BJT
IDSS D 2mA ˇF D 120

VPO D �2V VA D 135V
VA D 120V
Cobo D 6 pF at VBC D 5V
Cgso D 4 pF Cibo D 15 pF at VBE D 0:5V
Cgdo D 1:5 pF fT D 180MHz at ICT D 2:5mA

s
v +

_

ov

50 Ω

220 kΩ

1.5 kΩ

1 kΩ

+8 V

d
R
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10.33. Design a three stage npnBJT amplifier with an overall gain which is greater than 500with
a high 3-dB frequency of 10MHz and a low 3-dB frequency under 100Hz. e tran-
sistors are identical with the following characteristics:

ˇF D 200; fT D 400MHz; VA D 200V; and Cobo D 2 pF:

A 15V power supply is available. Confirm the design with SPICE.

10.34. Given the circuit shown below with transistor parameters:

JFET: IDSS D 10mA; VPO D �3:1V; VA D 100V; Crss D 6:5 pF; Ciss D 33:5 pF;
BJT:ˇF D 200; fT D 500MHz; VA D 200V; and Cobo D 5 pF:

Determine the high and low 3-dB frequencies.

0.1 µF
1 µF

33 µF

18 µF

s
v

_

ov

51 Ω
S
R S

C

C
C

O
C

D
R

1
Q

2
Q

5.1 kΩ

G
R

510 kΩ
SS
R

1 kΩ
B2
R

15 kΩ
E
R

2.2 kΩ

SS
C

33 µF

SS2
C

C
R

2.7 kΩ
B1
R

30 kΩ

L
R

2.7 kΩ

+15 V

10.35. Determine the high and low 3-dB frequencies for the circuit shown. e JFET has pa-
rameters,

VPO D �2V,
IDSS D 2mA,
VA D 200V,
Cgso D 3 pF,
Cgdo D 1 pF.

e BJT has parameters:
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ˇF D 150,
VA D 200V,
Cobo D 7 pF at VCB D 5V,
Cibo D 16 pF at VBE D 0:5V,
fT D 160MHz at ICT D 3mA.

Compare results to SPICE simulation.

s
v +

_

ov

200 Ω505 Ω

5.6 kΩ

15 V

10.36. For the Common-collector circuit shown, the BJT is described by:

ˇF D 150, rb D 30�,
VA D 200V,
C� D 0:5 pF, fT D 200MHz.

(a) Complete the design by determining the coupling capacitors so that the low 3-dB
frequency is 10Hz ˙ 2Hz.

(b) What is the midband gain?

(c) Determine the high 3-dB frequency.
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s
v+

_

ov

5.6 kΩ4.7 kΩ

10 kΩ

270 kΩ

6 V

10.37. In the emitter-coupled amplifier circuit shown, it has been decided to ground one of the
inputs and only use a single-ended output. e transistor parameters are:

ˇF D 120,
VA D 250V,
rb D 15�,
C� D 2 pF,
fT D 150MHz.

(a) Determine the quiescent conditions on all transistors.

(b) Determine the midband voltage gain of the circuit.

(c) Determine the high and low 3-dB frequencies.
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+15 V

-15 V

s
v

o
v

+
_

50 Ω 50 Ω

3.3 kΩ3.3 kΩ

2.4 kΩ

10.38. e BJT cascode amplifier shown uses identical transistors with parameters:

ˇF D 200, VA D 200V,
fT D 600MHz, and Cobo D 2 pF.

(a) Complete the design of the amplifier for IE D �3mA, and VCE1 D VCE2 D 3:5V.
Find the quiescent point of all of the transistors.

(b) Determine the high and low 3-dB frequencies.

(c) Confirm the results using SPICE.
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33 µF
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680 kΩ
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R
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1 kΩ
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10.39. e transistors in the differential amplifier shown below are identical and have the fol-
lowing characteristics:

IDSS D 10mA; VPO D �4:5V;
Crss D 7:3 pF; Ciss D 26:5 pF; Coss D 8:3 pF;
and VA D 100V:

Determine the high and low 3-dB frequencies.

i1
v

i2
v

o1
v

o2
v

1
Q

2
Q

D1
R

10 kΩ

i1
R

G1
R

1 kΩ
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R

1 kΩ
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R

10 kΩ

G2
R

510 kΩ510 kΩ

D2
R

10 kΩ
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V

+10 V

SS

-V

-10 V
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10.40. For the single-input differential amplifier shown, find the low and high 3-dB frequencies
Assume identical transistors with

ˇF D 120;

fT D 600MHz;
VA D 200V; and
Cobo D 2 pF:

i1
v

o1
v

o2
v

1
Q

2
Q

C1
R

1.8 kΩ

i1
R

100 Ω
i2

R

100 Ω

EE
R

22 kΩ

C2
R

1.8 kΩ

CC
V

+12 V

EE
-V

-12 V
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C H A P T E R 11

Feedback Amplifier Frequency
Response

e basic topology of a feedback amplifier, as previously described is shown in Figure 11.1.

Xi Xo 

Xf 

Xδ +

_
∑ A

f 

Figure 11.1: Basic negative feedback topology.

In Chapter 8 (Book 2) several of the benefits of negative feedback were presented and
analyzed. e mixing of a portion of the output signal with the input signal was shown to provide
several benefits:

• e gain of the amplifier is stabilized against variation in the characteristic parameters of
the active devices.

• e input and output impedances of the amplifier can be selectively increased or decreased.

• Non-linear signal distortion is reduced.

An additional benefit of negative feedback is the general increase in the midband frequency
range. Previously described as a reduction in the variation of the gain due to changes in frequency,
this increase in midband frequency range is exhibited by both an increase in the high 3 dB fre-
quency, fH , and a decrease in the low 3 dB frequency, fL.¹

e above listed benefits were shown to be accompanied by a drawback:

• e gain of the circuit is reduced.

¹Amplifiers for which fL D 0 will, with the application of negative feedback, continue to operate with no low-frequency
deterioration.
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An additional drawback is the possibility of oscillations. Amplifiers for which the high- and
low-frequency response is described by either single or double pole expressions are shown to be
inherently stable and not subject to oscillations. If the amplifier high- or low-frequency response
is described by three or more poles, the application of feedback brings forth the possibility of
instability in the form of oscillations. is possibility of instability can be controlled by either
limiting the range of applied feedback or with the addition of a compensation network to the
amplifier.

In this chapter the benefit of increased bandwidth and the possibility of oscillations re-
lated to negative feedback are explored in electronic amplifiers. As in Chapter 10, the fre-
quency response of an amplifier is broken into three regions: low-frequency, midband, and high-
frequency regions. e effect of feedback on the midband region was discussed thoroughly in
Chapter 8 (Book 2). Of interest here is the effect of feedback on the poles that determine the am-
plifier response in the low- and high-frequency regions. After deriving the pole location change
in single-pole systems, the analysis is expanded to two-pole, three-pole, and many-pole systems.
e concept of dominant poles is utilized to simplify system characterization when applicable.

While the early sections of this chapter focus on analysis techniques, the later sections focus
on design techniques to ensure stable amplifier operation. Stability against oscillation is explored
through the use of Bode diagrams and computer simulation, as well as other standard stability
criteria. Several common compensation networks that can alter the pole-zero characterization of
the basic forward amplifier and, thereby ensure amplifier stability are also explored.

11.1 THEEFFECTOFFEEDBACKONAMPLIFIER
BANDWIDTH (SINGLE-POLECASE)

It has been previously shown that the gain, Af , of a feedback amplifier is simply related to the
forward gain, A, of a loaded basic forward amplifier and the feedback ratio, f :

Af D
A

1C Af
: (11.1)

As in the derivations and demonstrations of Chapter 8 (Book 2), the amplifier gain can be ex-
pressed as a transresistance, a current gain, a voltage gain, or a transconductance depending on
the topology of the mixing and sampling processes. e frequency response derivations presented
here are not dependent the mixing or sampling topology.

As was seen in Chapter 10, the small-signal sinusoidal forward gain of an amplifier is
dependent on the frequency of the input. e high-frequency response of an amplifier that is
characterized by a single high-frequency pole, !H , and a mid-band gain, Ao, is given by:

A D
Ao

1C
j !

!H

: (11.2)
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When the feedback gain relationship, Equation (11.1), is applied to this single-pole frequency-
dependent gain expression, the resultant feedback gain is given by:

Af D

Ao

1C
j!

!H

1C

0BB@ Ao

1C
j!

!H

1CCA f
D

Ao

1C Aof C
j!

!H

D
Ao

1C Aof

0BB@ 1

1C
j!

.1C Aof /!H

1CCA : (11.3)

is gain is of the same form as that of a single-pole amplifier with reduced gain and increased
pole frequency:

Aof D
Ao

1C Aof
and !Hf D .1C Aof /!H : (11.4)

e gain has been reduced, as expected, by the return ratio (D D 1C Aof ) and the high-frequency
pole value has also been increased by the return ratio.

Similarly, if the low-frequency response of an amplifier is characterized by a single pole:

A D
Ao

1C
!L

j!

; (11.5)

the feedback gain can be derived to be:

Af D

Ao

1C
!L

j!

1C

0B@ Ao

1C
!L

j!

1CAf
D

Ao

1C Aof C
!L

j!

D
Ao

1C Aof

0B@ 1

1C
!L

.1C Aof / j!

1CA : (11.6)

is gain is again of the same form as that of a single low-frequency pole amplifier. e feedback
amplifier low-frequency pole magnitude is given by:

!Lf D
!L

1C Aof
: (11.7)

e gain has been reduced, as expected, by the return ratio (D D 1C Aof ) and the low-frequency
pole value has been decreased by the return ratio.

Frequency Response
e magnitude of the gain function of a general amplifier with (Af ) and without (A) feedback
is shown in Figure 11.2a with frequency on a logarithmic scale. e increase in the width of
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the midband frequency range is evident. In Figure 11.2b, the Bode straight-line approximate
amplitude plot is shown. It is interesting to note that the intersection of the two Bode plots
occurs at ! D !Lf and ! D !Hf . Outside the midband region of the feedback amplifier, the Bode
plots are coincident. is property is a useful aid in the design of feedback amplifiers described
by simple poles.

Step Response
e time-domain response of a single-pole amplifier to unit step is a simple exponential decay to
the final value:

Xo.t/ D Xo.final/ C
�
Xo.initial/ �Xo.final/

�
e�t=� ; (11.8)

where

� D
2�

!H
: (11.9)

|A|

|Af |

Ao 

Aof 

.707Ao 

.707Aof 

ωLf ωHfωL ωH ω(log scale)

(a)

20 log |Ao| 

20 log |Aof | 

20 log |1 +Ao f | 

ωLf ωHfωL ωH ω(log scale)

20 dB/decade –20 dB/decade

(b)

Figure 11.2: Changes to gain with the application of feedback: (a) Gain on a linear scale; (b) Idealized
Bode plot.
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Application of feedback increases the high-frequency pole, !H , and consequently reduces the
time constant of the exponential decay for the step response:

�f D
2�

!Hf
: (11.10)

e amplifier responds more quickly to step inputs. e tilt or sag of the amplifier is measured
with a pulse train of frequency, !, and is dependent on the low-frequency pole:

sag D
�!L

!
� 100% D

�fL

f
� 100%: (11.11)

e application of feedback reduces !L and consequently reduces the tilt or sag of the pulse train
response.

11.2 DOUBLEPOLEFEEDBACKFREQUENCYRESPONSE
e high-frequency response of an amplifier that is characterized by two high-frequency poles,
!1 and !2, and a mid-band gain, Ao, is given by:

A D
Ao�

1C
j!

!1

��
1C

j!

!2

� : (11.12)

In order to more appropriately study the change in pole location for multiple-pole amplifiers, a
change in the notation to describe frequency will be used:

j! ) s D j! C �: (11.13)

is notation is common as one progresses from Fourier analysis to Laplace analysis and should
be familiar to the reader. Under this change of variables, Equation (11.12) becomes:

A D
Ao�

1C
s

!1

��
1C

s

!2

� : (11.14)

When the feedback gain relationship, Equation (11.2), is applied to this double-pole frequency-
dependent gain expression, the resultant feedback gain is given by:

Af D
Ao�

1C
s

!1

��
1C

s

!2

�
C Aof

(11.15)
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which is more commonly written in the form:

Af D
Ao

1C Aof

0BB@ 1

1C
s

1C Aof

�
1

!1
C

1

!2

�
C

s2

1C Aof

�
1

!1!2

�
1CCA : (11.16)

As expected, the low-frequency gain is reduced by the return ratio. However, the new locations
of the two poles is not obvious. One heuristic approach to visualizing the general pole loca-
tion change due to various amounts of feedback is through a plot of the denominator of Equa-
tion (11.15):

P .s/ D

�
1C

s

!1

��
1C

s

!2

�
C Aof: (11.17)

e plot of the denominator, P.s/, is shown in Figure 11.3 for four values of the loop gain, Aof .
With unity return ratio (no feedback), the curve intersects the horizontal axis at the two poles,
�!1 and �!2, of the basic amplifier gain, A. Increasing the feedback raises the curve, P.s/, by
Aof and results in a translation of the two poles, seen as the intersection of the curve with the
horizontal axis, toward each other. With sufficiently large loop gain, the curve, P.s/, no longer
crosses the horizontal axis and the poles become a complex conjugate pair.

A more rigorous approach to determining the migration of the pole locations with varying
feedback casts Equation (11.16) into the general form:

Af D
Ao

.1C Aof /

�
1C 2�

s

!o
C
s2

!2o

� : (11.18)

is format was initially presented in Chapter 9 and is standard for a two-pole system with
resonant frequency,

!o D
p
!1!2 .1C Aof /I (11.19)

and damping coefficient,

� D
!1 C !2

2
p
.1C Af /!1!2

D
!1 C !2

2!0
: (11.20)

e resonant frequency and the damping coefficient depend on the original pole location and
return difference,D D 1C Aof . e resonant frequency increases as the square root of the return
difference, while the damping coefficient decreases by the same factor.With the use of the quadratic
formula, the two poles can be found to be located at:

s D �
!1 C !2

2
˙
!1 C !2

2

s
1 �

1

�2
: (11.21)
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pole

translation

pole

translation

increased

feedback

P(s)

ω

–ω1–ω2 –ω1

Figure 11.3: Heuristic interpretation of pole migration with increasing loop gain.

As predicted by the heuristic approach, when there is a large damping coefficient, � > 1, (small
amounts of feedback) there are two distinct, real poles: for small damping coefficient, � < 1, (large
amounts of feedback) the argument of the square root becomes negative and the poles become a
complex conjugate pair.

It is common to display the locus of pole locations with varying damping coefficient on
the complex s plane. is plot, called a root-locus plot, is shown in Figure 11.4. As the damping
coefficient decreases (return difference increases) the poles converge along the real axis and then
split vertically. Notice that when the poles of this two-pole gain function become a complex
conjugate pair, the real part of the pole location remains a constant. is constancy of the real
part of the complex pair pole location indicates that the poles are always located in the left-half
of the complex plain: the resonant frequencies, est, contain an exponential decay. Consequently,
resonances do not experience uncontrolled growth and the two-pole feedback amplifier is always
stable.

11.2.1 FREQUENCYRESPONSE
e frequency response of a two-pole system has been discussed extensively in Section 9.1. A
normalized plot the frequency response of a two high-frequency pole system in the general neigh-
borhood of !o with the damping coefficient as a parameter (0:2 � � � 1:0 in increments of 0:1)
is shown in Figure 11.5.

In Chapter 9, a peak in the frequency response was found to exist for damping coefficients
less than 1=

p
2. is characteristic is particularly important in the design of amplifiers: the design
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σ

Figure 11.4: e root locus of a two-pole gain function.

10

5

–5

–10

–15

–20

0

0.1ω ωo 10ωo

ζ = 0.2

ζ = 1.0

Af

Afo
dB

Figure 11.5: Normalized feedback amplifier gain.

requirements of good amplifiers rarely allows for significant peaks in the frequency response of
the gain. e frequency at which this peak occurs is related to !o:

!peak D !o
p
1 � 2�2; (11.22)

and has magnitude: ˇ̌
Af

�
!peak

�ˇ̌
D

ˇ̌
Aof

ˇ̌
2�
p
1 � �2

: (11.23)
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e design specifications on the midband flatness will place an lower limit on the damping coeffi-
cient (and consequently the return difference). Good amplifiers rarely have damping coefficients
less than 0:5.

In amplifier design it is important to find the change in the 3 dB frequency as feedback
is applied to the amplifier. In two-pole systems, the high 3 dB frequency, !Hf , is dependent on
the resonant frequency, !o, and the damping coefficient, �. Each of these quantities is, in turn,
dependent on the original pole locations, !1 and !2, and the return difference,D. e calculation
of the 3 dB frequency is therefore a complicated process. One approach to this process begins with
the notational convention that the amplifier before the application of feedback is described by two
simple poles with frequency ratio:

!2 D k!1: (11.24)
It was previously shown in Section 10.2 that if k > 4, a dominant pole exists. After the application
of feedback, it is also possible that a dominate pole exists. To determine the appropriate condition
for a dominant pole with feedback, the ratio of the two feedback pole frequencies, kf , given in
Equation (11.21) is taken:

kf D

�
!1 C !2

2

 
1C

s
1 �

1

�2

!

�
!1 C !2

2

 
1 �

s
1 �

1

�2

! > 4: (11.25)

e condition necessary for a feedback dominant pole is the solution of Equation (11.25), given
by:  

1C

s
1 �

1

�2

!
> 4

 
1 �

s
1 �

1

�2

!
(11.26)

or

� > 1:25: (11.27)

If this condition on the damping coefficient is met, the 3 dB frequency of the system can be
obtained with the methods described in Section 10.2. While the dominant pole case is significant,
in many cases the damping coefficient is smaller than the appropriate value (� < 1:25) and other
methods of determining the 3 dB frequency must be used. e 3 dB frequency must be obtained
by analysis of the magnitude of the feedback gain equation (Equation (11.18)). If the parameter
s is replaced by its sinusoidal equivalent, s ) j!, the gain expression becomes:

Af

Aof
D

1�
1C 2�

j!

!o
�
!2

!2o

� : (11.28)
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Which, when related to relative magnitudes, reduces to:ˇ̌̌̌
Af

Aof

ˇ̌̌̌2
D

1�
1 �

!2

!2o

�2
C 4�2

!2

!2o

: (11.29)

e 3 dB frequency, !Hf , occurs when the gain power ratio is reduced to one-half its midband
value or when the denominator of Equation (11.29) has value 2: 

1 �
!2Hf

!2o

!2
C 4�2

!2Hf

!2o
D 2: (11.30)

Application of the quadratic formula leads to a solution for !Hf :

!2Hf

!2o
D 1 � 2�2 C

q
.1 � 2�2/

2
C 1: (11.31)

Equation (11.19) can be recast into a form to relate!o to the lowest non-feedback pole frequency:

!o D !1
p
k.1C Af / D !1

p
kD: (11.32)

Which leads to a relationship between the feedback 3 dB frequency and the lowest non-feedback
pole:

!Hf

!1
D

s�
1 � 2�2 C

q
.1 � 2�2/

2
C 1

�
kD: (11.33)

Because of the dependence of � on the initial pole spacing, k, and the return difference, D, the
true significance of Equation (11.33) is disguised. One form of interpreting the significance of
this expression is the ratio of 3 dB frequency to the product of the return difference and !1:

!Hf D

 s�
1 � 2�2 C

q
.1 � 2�2/

2
C 1

�
k

D

!
.D!1/ : (11.34)

Further insight can be obtained by replacing the return difference (inside the square root) with
its equivalent expression in k and �:

D D
.k C 1/2

4k�2
:

Equation (11.34) now takes the form:

!Hf D

 
2k�

k C 1

s�
1 � 2�2 C

q
.1 � 2�2/

2
C 1

� !
.D!1/ : (11.34a)
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e relationship is similar to the single pole case with an additional factor:

!Hf D K .�; k/ �D � !1 (11.35)

where the factor, K.�; k/, is given by:

K .�; k/ D
2k�

k C 1

s�
1 � 2�2 C

q
.1 � 2�2/

2
C 1

�
: (11.36)

is relationship is shown in Figure 11.6 for a variety of initial pole ratios, k.
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Figure 11.6: High 3 dB frequency as a function of � and non-feedback pole spacing.

Example 11.1
A two-pole amplifier with midband gain, Ao D 1000, and two high-frequency poles, f1 D

100 kHz and f2 D 1MHz, has feedback applied so that the midband gain is reduced to

Aof D 80:

Determine the location of the new poles and the high 3 dB frequency.

Solution
e ratio of the two pole frequencies is: k D 10. e return difference is the ratio of the

two gains:

D D
Ao

Aof
D
1000

80
D 12:5:

e resonant frequency is found to be:

fo D
p
f1f2 .1C Aof / D

p
100 k .1M/ 12:5 D 1:118 MHz
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and damping coefficient,

� D
f1 C f2

2fo
D

k C 1

2
p
kD

D
10C 1

2
p
10 � 12:5

D 0:492:

e high 3 dB frequency, fH , can be found by obtaining K.�; 10/ from Figure 11.6 (or Equa-
tion (11.36)) and by multiplying K.�; 10/;D and f1.

fH D K.�; 10/Df1 D .1:146/.12:5/.100k/ D 1:43MHz:

e two poles are a complex conjugate pair located at

s D 2�
h
�550k ˙ j 550k

�p
3:1311

�i
D �1:1� ˙ j1:95�Mrad=s:

A plot of the amplifier gain (in dB) with and without feedback is shown below.
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Low-frequency response
If the low-frequency response of an amplifier is described by two low-frequency poles, !1L and
!2L, the gain function can be expressed as:

A D
Ao�

1C
!1L

s

� �
1C

!2L

s

� : (11.37)

e application of feedback to the amplifier will produce a convergence of poles similar to that
described for high-frequency poles. ere are, however distinct differences. e low-frequency
resonant frequency, !oL is given by:

!oL D

r
!1L!2L

1C Af
; (11.38)
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and the expression for the damping coefficient is:

�L D
!oL

2

�
1

!1L
C

1

!2L

�
D

k C 1

2
p
kD

: (11.39)

e frequency response plots take the same form as for high-frequency poles with the single
exception of being mirror images on the logarithmic frequency scale. e low 3 dB frequency,!Lf ,
can be determined in a similar manner as was the case for !Hf . For damping coefficients, �, greater
than 1.25, a dominant pole exists and the methods of Chapter 10 can be used to determine !Lf .
If the damping coefficient is smaller than 1.25, the methods of this chapter are more appropriate.

If the two low-frequency poles are identified by !1L , the pole closest to the midband
region, and

!2L D
!1L

k
; (11.40)

the low 3 dB frequency is given by:

!Lf D
!1L

K .�L; k/ �D
; (11.41)

where, K.�; k/ is defined by Equation (11.36).
e frequency response curve will also exhibit a peak if the low-frequency damping coeffi-

cient is less than 1=
p
2. Peaks in the low-frequency response are usually undesirable in amplifiers

and good amplifiers rarely have damping coefficients less than 0.5. e frequency of this peak is
related to !oL:

!peak D
!oLp
1 � 2�2

; (11.42)

and has magnitude:

ˇ̌
Af

�
!peak

�ˇ̌
D

ˇ̌
Aof

ˇ̌
2�
p
1 � �2

: (11.43)

Example 11.2
A two-pole amplifier with midband gain,Ao D 1000, and two low-frequency poles, f1 D 100Hz
and f2 D 10Hz, has feedback applied so that the midband gain is reduced to

Aof D 80:

Determine the low 3 dB frequency.
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Solution:
Here the ratio of the two pole frequencies is 10. e return difference is the ratio of the

two gains:

D D
Ao

Aof
D
1000

80
D 12:5:

e resonant frequency is found to be:

foL D

s
f1Lf2L

1C Aof
D

r
100 .10/

12:5
D 8:944 Hz

and damping coefficient,

�L D
k C 1

2
p
kD

D
10C 1

2
p
10 � 12:5

D 0:492:

e low 3-dB frequency, fL, can be found by obtaining K.�L; 10/ from Figure 11.6 (or Equa-
tion (11.36)) and by dividing f1L by the product of K.�L; 10/ and D.

fL D
f1L

K .�L; 10/ �D
D

100

1:146 .12:5/
D 7:0 Hz:

A plot of the amplifier gain (in dB) with and without feedback is shown below.
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11.2.2 STEPRESPONSE
e step response for an amplifier with two real high-frequency poles was discussed in Sec-
tion 10.1. Feedback amplifiers with greater than unity value damping coefficients behave is the
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same manner: the step response is the sum of two exponential terms converging to a steady-
state value. Damping coefficients less than unity value are underdamped systems and have a more
complex step response.

e response of an underdamped feedback amplifier to a unit step is given by:

X.t/ D Aof

�
1 �

�
�!o

!d
sin!d t C cos!d t

�
e��!ot

�
; (11.44)

where the damped frequency, !d , is given by the expression:

!d D
p
1 � �2!o: (11.45)

A plot of the normalized step response of a feedback amplifier is shown in Figure 11.7 for several
values of the damping coefficient, �.
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Figure 11.7: Step response of a two-pole feedback amplifier.

For small values of the damping coefficient, �, the step response of a feedback amplifier overshoots
and oscillates about the final value before settling down to a steady-state condition. While a
small amount of overshoot is often acceptable, large overshoot is often unsatisfactory for quality
amplifiers. In order to quantify the response several quantities are defined as follows:
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Rise time � time to rise from 10% to 90% of the final value
Delay time � time to rise to 50% of the final value
Overshoot � peak excursion above the peak value
Damped period � time interval for one cycle of oscillation
Settling time � time for response to settle to within ˙P% of the

steady-state value

ese parameters are displayed for a typical underdamped step response in Figure 11.8.
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Figure 11.8: Step response for � D 0:25.

e quantifying parameters can be obtained through careful analysis of Equation (11.43).
One significant parameter, the overshoot, is obtained by setting the first derivative of Equa-
tion (11.43) to zero: the resultant time of the first peak is:

tpeak D
2�

!d
D

2�p
1 � �2!o

: (11.46)

e peak value of the step response is given by X.tpeak/:

X
�
tpeak

�
D Aof

0BB@1C e

���p
1 � �2

1CCA : (11.47)
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Which is equivalent to an overshoot of

overshoot D e

���p
1 � �2

� 100%: (11.48)

A good amplifier will have small rise, delay and settling times and a small overshoot. Rise and
delay time decrease with increased return ratio (D) while overshoot and settling time increase once
the system becomes underdamped. e design process balances the conflicting requirements.

Tilt or Sag
It has previously be shown the low-frequency poles tilt the constant portion of a square wave. Am-
plifiers described by underdamped low-frequency poles also exhibit tilted square wave response.
e response of a low-frequency underdamped amplifier to a unit step is given by:

XL .t/ D Aof

�
cos .!dLt / �

�!oL

!dL
sin .!dLt/

�
e��!oLt : (11.49)

While this response is oscillatory, it can be approximated as

XL .t/ � Aof f1 � 2�!oLtg ; (11.50)

for small values of!oLt . Under these approximations, the percent tilt of a square wave of frequency
! is given by

sag �
2��!oL

!
� 100% D

2��foL

f
� 100%: (11.51)

Notice that increasing feedback reduces the resonant frequency and the damping coefficient: the
percent tilt will be decreased by each of these reductions.

11.3 MULTIPOLE FEEDBACKFREQUENCYRESPONSE
It has been shown that the frequency response of an amplifier is dependent the pole locations.
e application of feedback alters the pole locations and therefore the frequency response. In
first and second order systems, the migration of poles is relatively simple to describe: the poles
move in a predictable manner and remained in the left-hand plane. As a consequence, single-
pole or double-pole feedback amplifiers are always stable. In systems with three or more poles,
hereafter identified asMultipole Amplifiers, some of the poles migrate into the right-hand plane if
sufficiently large quantities of feedback (large return difference) are applied. Multiple amplifiers
can become unstable.² If, however, the feedback is moderate, multipole amplifiers are stable and
extremely useful.

²Stability criteria and compensation are discussed in the Sections 11.4 and 11.5.
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e high-frequency response of an amplifier that is characterized by three high-frequency
poles, !1; !2, and !3, and a mid-band gain, Ao, is given by:

A D
Ao�

1C
s

!1

��
1C

s

!2

��
1C

s

!3

� : (11.52)

When the feedback gain relationship, Equation (11.2), is applied to this triple-pole frequency-
dependent gain expression, the resultant feedback gain is given by:

Af D
Ao�

1C
s

!1

��
1C

s

!2

��
1C

s

!3

�
C Aof

: (11.53)

As expected, the midband gain is reduced by the return difference: the new pole locations are
obscure. e heuristic approach to pole location migration is shown in Figure 11.9. As can be
seen in the figure, the two lower-frequency poles, !1 and !2, converge and, with sufficient feed-
back, become a complex conjugate pair. With increased feedback, the highest magnitude pole
frequency, !3, increases in magnitude and becomes more distant from the two lower-frequency poles.
is separation of the poles is of particular interest as it indicates that the lower-frequency poles
become more dominant poles as feedback increases.

As with the two-pole case, the heuristic approach gives no insight into pole migration once
poles become a complex conjugate pair. A root-locus plot is necessary to show the pole migration
in the complex plane: Figure 11.10 shows the migration of poles for a third-order system.

e lower-frequency pole pair converge until the damping coefficient associated with the
pair is of unity value. At this point, the pair diverges vertically: this migration mimics the two-
pole case. However, as feedback is increased and the damping coefficient is reduced further, the
pole-pair migrates toward the right-hand plane. With large amounts of feedback, the pole-pair
crosses the axis into the right-hand plane and the system becomes unstable. Since small damp-
ing coefficients are, in general, undesirable in amplifiers, a quality amplifier with a relatively flat
midband region will not sufficiently displace the pole pair to cause instability.

As the number of poles increases, it becomes more difficult to intuitively understand the
migration of poles with changes in feedback. Continued application of the heuristic interpretation
shows that the lowest pole pair will converge in all cases. Each successive pole pair thereafter will
also converge. In odd-order systems, the final highest magnitude frequency pole will move to
even higher frequencies. e migration of the poles once they have become complex conjugate
pairs is, as usual, determined through the use of a root-locus plot.

ere are three simple rules to aid in the construction of an approximate root-locus plot for
an amplifier described by high-frequency poles:
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Figure 11.9: Heuristic interpretation of pole migration: third-order system.
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Figure 11.10: Root-locus of a three-pole gain function.

1. e average of the pole frequencies remains unchanged with the application of feedback. It
is given as:

�o D
1

np

npX
cD1

pc : (11.54)
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2. When a pole pair becomes underdamped ( � < 1) the root-locus for that pair departs from
the real axis at an angle of 90ı. e location of the departure point is at a zero of the slope
of the denominator function, P.s/.

3. Each pole-pair root-locus approaches an asymptote that intersects the real axis at �o and
diverges from the real axis at an angle of:

� D ˙
180ı Cm360ı

np
m D 1; 2; : : : ; np=2: (11.55)

For example, the asymptotes for a third order system are at ˙60ı and at 180ı (seen as dotted
lines on Figure 11.10): for a fourth-order system, they are at ˙45ı and ˙135ı: for a fifth-order
system, at ˙36ı, ˙108ı, ˙180ı.
Some conclusions that can be drawn from these construction rules are:

• e two lowest-frequency poles form a pole pair that will have the greatest significance in
determining amplifier high-frequency response.

• Poles that are at higher frequencies than the lowest-frequency pole pair will migrate farther
away from the pole pair. For example, in a third-order system, the second and third poles
migrate away from each other.

• If the lowest-frequency pole pair is dominant before the application of feedback, it will
remain dominant.

e consequence of these conclusions is the treatment of multipole amplifiers as if they
were two-pole amplifiers as long as the second and third poles are at least two octaves apart:ˇ̌̌̌

!3

!2

ˇ̌̌̌
� 4: (11.56)

e low-frequency response of a feedback amplifier is also approximately determined by its dom-
inant poles: the pole pair that is closest to the midband region.

Example 11.3
A three-pole amplifier with midband gain, Ao D 1000, and three high-frequency poles, f1 D

100 kHz, f2 D 1MHz, and f3 D 6MHz has feedback applied so that the midband gain is re-
duced to

Aof D 80:

Determine the high 3 dB frequency.
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Solution
is amplifier is the same as the amplifier of Example 11.1 with the addition of an addi-

tional pre-feedback pole at 6MHz. e ratio of the second and third pole frequencies is given
by: ˇ̌̌̌

!3

!2

ˇ̌̌̌
D

ˇ̌̌̌
f3

f2

ˇ̌̌̌
D
6MHz
1MHz

D 6 � 4:

e pole pair is dominant and the results of Example 11.1 are approximately valid:

fH � 1:43MHz:

A computer simulation of the exact response (including all three poles) found the 3 dB frequency
to be at fH D 1:489MHz. e approximate result is entirely satisfactory with less than �4%
variation in the 3 dB frequency from the exact result. e three feedback amplifier poles can be
numerically found to be:

p1 D �0:4332C j1:054MHz p2 D �0:4332C j1:054MHz
p3 D �6:233MHz:

Notice that the sum of the feedback poles is �7:1MHz: the same as the sum of the non- feedback
poles.

11.4 STABILITY IN FEEDBACKCIRCUITS
It was shown in Chapter 8 (Book 2) that the benefits of negative feedback were obtained at the
expense of reduction in gain by the reduction factor,D. An additional drawback to using feedback
in circuits is the possibility of self-oscillation: that is, the amplifiermay become an unstable system.
In general, a stable electronic system has an output response, that decays to zero with time when
excited by any initial energy in the system. e initial energy can take the form of random noise
in the power supply rails. A stable system in steady state does not have a time-varying output
when the input is zero. An unstable or marginally stable electronic system will have some form
of output when the input is zero.

Instability in electronic circuits stems from the fact that the forward gain of the amplifier
and reverse gain from the feedback elements may be frequency sensitive. At low and high fre-
quencies, the output voltage may be shifted in phase and changed in magnitude relative to the
midband frequencies. At the mixing point in the feedback circuit, the input signal to the circuit
and the output signal of the feedback network may, because of this additional phase shift, add
rather than subtract which can result in possible oscillation.

Unstable circuit behavior can be visualized by studying Equation 8.5 (Book 2), which is
repeated here:

Af .s/ D
A .s/

1C A .s/ f
: (11.57)
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When A.s/f D �1, the total gain of the circuit Af .s/ ! 1: a condition that is intolerable in
amplifiers and represents an output that is essentially limited by the power rails.³

For the loop gain, A.s/f , to be negative, the combination of phase shifts by the forward
gain and the feedback ratio must cause a summation of in-phase signals at the mixing point of
the feedback amplifier. Stable amplifier operation requires that the magnitude of the loop gain,
jA.s/f j, to be less than unity when its phase angle approaches 180ı.⁴

11.4.1 GAINANDPHASEMARGINS
Amplifier stability can be analyzed using the magnitude and phase verses frequency plots of the
loop gain. Figure 11.11 shows themagnitude and phase verses frequency plots of a three- pole loop
gain function. e gain margin is the difference in gain (in dB) between the 0 dB loop gain (unity
magnitude) and the loop gain magnitude at a phase angle, †A.s/f , of 180ı from the midband:
that is, Gain Margin D �jA.s/f j180ı in dB. A positive value for the gain margin indicates stable
amplifier operation; if the gain margin is near zero, the amplifier is unstable and its output will
oscillate without regard to its input.

e phase margin is the difference between the loop gain phase angle, †A.s/f , at
jA.s/f j D 0 dB (unity magnitude) and †A.s/f D �180ı: that is,

Phase Margin D †A.s/f j0 dB C 180ı: (11.58)

For stable operation, the phase margin must be greater than 0ı.
Alternately, the stability of a feedback amplifier can be determined from the difference

between the magnitude and phase verses frequency plots of the open-loop gain and the feedback
ratio. If the feedback ratio is frequency independent (resistive), 20 log j1=f j is a straight horizontal
line on the open-loop gain magnitude verses frequency plot. e phase of f is constant for a
resistive feedback network. In the midband region, A.s/ and f both have the same sign: their
phases must be identical at either 0ı or 180ı. e magnitude of the loop gain (in dB) can be
expressed as the difference of the magnitude of the open-loop gain and the magnitude of the
inverse of the feedback ratio,

20 log jA .s/ f j D 20 log jA .s/j � 20 log
ˇ̌̌̌
1

f

ˇ̌̌̌
: (11.59)

Equation (11.59) can be used to plot the magnitude and phase verses frequency characteristics
for the open-loop gain and the feedback ratio to determine amplifier gain and phase margins
for varying values of the feedback ratio, f . Figure 11.12 shows how the plots of the open-loop
gain and feedback ratio can be used to determine the gain and phase margins. e phase of the
open loop amplifier is plotted as a relative phase difference to the midband phase of A.s/. e
Figure shows a straight horizontal line (for a resistive network) representing the feedback ratio,
³e output voltage is actually limited by the nonlinear regions of the transistor characteristics.
⁴Recall that a 180ı phase shift causes a sign change in the signal.
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20 log j1=f j, superimposed on the magnitude verses frequency plot of the open-loop gain. e
loop gain is the difference between the open-loop gain and the inverse of the feedback ratio. e
gain margin is the difference (in dB) of the inverse of the feedback ratio to the open-loop gain
magnitude (in dB) at a phase angle, †A.s/, of 180ı: that is,

Gain Margin .in dB/ D 20 log j1=f j � 20 log jA.s/j180ı : (11.60)
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Figure 11.11: Definition of (a) Gain margin and (b) Phase margin.

e phase margin is the difference of the phase angle at the intersection of the magnitudes of the
open-loop gain and inverse of the feedback ratio to †A.s/ D �180ı.
It is common to specify the design of feedback amplifiers with gain and phase margins of greater
than 10 dB and 50ı, respectively. is assures stable amplifier operation over variations in com-
ponent parameter values.

e amount of phase margin has a significant effect on the shape of the closed-loop mag-
nitude response of the feedback amplifier. Using the definitions of gain and phase margin, the
frequency !1 where the loop gain is unity is,

A .j!1/ f D 1 � e�j� ; (11.61)
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where

� D 180ı
� .phase margin/: (11.62)

e closed-loop gain at !1 is,

Af .j!1/ D
A .j!1/

1C A .j!1/ f
D

1

f
e�j�ˇ̌

1C e�j�
ˇ̌ : (11.63)
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Figure 11.12: Alternate stability analysis technique.

e magnitude of the closed-loop gain is therefore,

ˇ̌
Af .j!1/

ˇ̌
D

1

fˇ̌
1C e�j�

ˇ̌ D

1

fq
.1C cos �/2 C sin2�

: (11.64)
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Using Equation (11.64), the magnitude of the closed-loop gain for a 50ı phase margin, or � D

180ı � 50ı D 130ı, is

ˇ̌
Af .j!1/

ˇ̌
D

1

fq
.1C cos 130ı/2 C sin2130ı

D
1:18

f
: (11.65)

Equation (11.65) indicates that the magnitude plot of the closed-loop gain will peak by
a factor of 1.18, or 1.4 dB, above the midband gain value of 1=f . For lower phase margins, the
peaking in the magnitude plot increases. For example, for a 10ı phase margin, the closed-loop
gain magnitude plot will peak by 5.7, or 15.1 dB, above the midband gain at frequency at !1. For
a 90ı phase margin, the magnitude plot of the closed-loop gain at !1 is 0.707, or �3 dB, of the
midband gain.

For a two pole system or a three pole system that is dominated by the two lowest pole
frequencies, the phase margin is related to the damping coefficient in Equation (9.17) which is
repeated here: ˇ̌

Af
�
!peak

�ˇ̌
D
ˇ̌
Af .!1/

ˇ̌
D

1

2�
p
1 � �2

: (11.66)

An equation solver may be used to determine � in Equation (11.66) for a given phase margin.

Example 11.4
A feedback amplifier has an open loop transfer function,

A .s/ D
100 � 103 

1C
s

2�
�
10 � 103

�! 1C
s

2�
�
200 � 103

�! 1C
s

2�
�
20 � 106

�!
and resistive feedback ratio f D 1=100.

1. Find the gain and phase margins.

2. Is the amplifier stable?

3. Plot the closed loop gain response.

Solution:

1. e Gain and Phase margins are found by plotting (either asymptotic or computer) the
open loop transfer function and the feedback ratio as shown below:
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From the frequency plots, the Phase Margin D C10ı and Gain Margin D C10 dB.

2. e feedback amplifier is just stable since Gain Margin > 0 and Phase Margin > 0. How-
ever, since the Phase Margin is less than C50ı, variations in temperature and component
parameters may cause the amplifier to become unstable.

Since the circuit frequency response has dominant pole characteristics, the approximate
analysis discussed in this section may be used to determine the amount of peaking. It was
shown in this section that a 10ı phase margin corresponded to an amplitude peak of 15.1 dB
relative to the midband gain.

3. e closed loop response exhibits peaking of slightly greater than 15 dB above the midband
gain.
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11.4.2 NYQUIST STABILITYCRITERION
An alternate method for analyzing feedback amplifiers was developed by H. Nyquist in 1932. e
Nyquist criterion can determine whether a linear amplifier is stable.

A closed-loop feedback amplifier with gain, Af .s/, is stable if it has no poles with positive
or zero real parts. Assuming that the open-loop gain and the feedback ratio are stable,⁵ only the
loop gain A.s/f need be inspected for poles with positive or zero real parts.

e Nyquist diagram is simply a polar plot of A.s/f for s on the contour shown in Fig-
ure 11.13a.

e Nyquist diagram maps the right half of the s-plane, shown in Figure 11.13a, into the
interior of the contour in theAf plane (Figure 11.13b). If there are zeros ofD.s/ in the RHP, the
Af plane contour will enclose the point �1†0ı, which is called the critical point. e number
of times that the Af plane contour encircles the critical point in a counterclockwise direction is
equal to the number of zeros of D.s/ with positive real parts.
⁵e open-loop gain in electronic amplifiers are assumed to be stable. However, if the open-loop amplifier contains feedback
elements, the open-loop gain must be analyzed for stability. Passive component feedback ratios are stable.
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Figure 11.13: (a) Nyquist s-plane contour; (b) A.j!/f plane contour for a loop gain with three
identical poles.

e behavior of the closed-loop response is determined largely by the nearness of the plot
ofA.j!/f to the �1 point on the Nyquist diagram. Figure 11.14a is a plot of a loop gain response
that encircles the critical point and is unstable by the Nyquist criterion. Figure 11.14b is a plot of
a stable amplifier whose loop gain response does not encircle the critical point.
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Figure 11.14: (a) Nyquist diagram for a stable loop gain; (b) Nyquist diagram for an unstable loop
gain.

eNyquist diagram can be used to find the gain and phasemargins of a feedback amplifier.
Since stability is related to the amplifier gain at �180ı phase shift, the gain margin and phase
margin are defined in a Nyquist diagram as follows (Figure 11.15):
Gain margin: For a stable amplifier, the ratio 1=˛ in dB, where ˛ is the distance from the �180ı

crossover on the Nyquist diagram (where the plot of A.j!/f crosses the negative real axis) to the
origin, corresponds to the gain margin: that is, gain margin ŒdB� D 20 log j1=˛j. If the Nyquist
diagram has multiple �180ı crossovers, the gain margin is determined by that point that lies
closest to the critical point.
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Figure 11.15: Gain margin and phase margin for Nyquist diagram.

Phase margin: For a stable amplifier, the phase margin is the magnitude of the minimum angle
�M between a line from the origin to the point where the Nyquist diagram of A.j!/f intersects
a circle of unit radius with the center at the origin and the negative real axis.

Example 11.5
A three stage transistor amplifier with feedback was found to have a loop gain frequency response
that is approximately

A .j!/ f D
5 

1C
j!

2�
�
104

�!3 :
(a) Plot the loop gain on the complex plane.

(b) Is the amplifier stable?

(c) At what frequency does a 180ı phase shift occur for the amplifier?

(d) What is the maximum magnitude of the loop gain for stable operation for networks having
this form of transfer function?

(e) What are the gain and phase margins?

Solution:

(a) Using MathCAD, the following Nyquist plot was drawn:
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(b) e amplifier is stable since the Nyquist plot does not encircle the �1C j 0 point.

(c) From the expression of the loop gain, the intersection of the plot with the negative real axis
occurs when the imaginary part of the loop gain is zero. e denominator of the loop gain
is expanded to solve for the frequency where the imaginary part of the loop gain is zero,�

1C
j!

!o

�3
D

�
1 � 3

!2

!2o

�
C j

�
3
!2

!2o
�
!3

!3o

�
;

where !o D 2� � .10 � 103/. is expression is real when,�
3
!2

!2o
�
!3

!3o

�
D 0

at the frequency, !o D 108:8 krad/s ) 17; 320Hz.
At 17; 320Hz, the loop gain is,

jA .j!/ f j!D108:8 krad=s D
5

1 � 3
!2

!20

D
5

1 � 3

 
108:8 � 103

2�
�
10 � 103

�! D �
5

8
:

is value is greater than �1, and as is evident from the plot of the loop gain, no encir-
clement of �1C j 0 occurs at this value of gain.

(d) e gain can be increased by 8/5 before �1C j 0 is intersected. erefore, the condition for
absolute stability for amplifiers having this form of loop gain transfer function is,

jA .j!/ f j <

�
8

5

�
5 D 8:

However, by doing so, there will no longer be any margin for stability and the amplifier
transient response will become increasingly oscillatory as this limiting value of gain is ap-
proached.
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(e) From part (c), ˛ D 5=8 and 20 log.5=8/�1 D 4:08 dB is the gain margin. Data from the
Nyquist plot showsA.j!/f D 1 at ! D 87:5 krad/s ) 13:88 kHz and †A.j!/f D 17:3ı.
e phase margin is j†A.j!/f � 180ıj D 168ı.

11.5 COMPENSATIONNETWORKS
Feedback amplifiers have been shown to be unstable if they are characterized by negative phase
margins. In negative feedback amplifiers, the potential for instability is present when the amplifier
open-loop (loaded basic forward) transfer function has three or more poles. Unstable amplifiers
can be stabilized by:

• Decreasing the loop gain, Af , of the amplifier

• Adding a compensation network to the amplifier to shape the loop gain frequency response
characteristic so that the phase and gain margins are positive and in the acceptable range
(desirable phase margin � 50ı and gain margin � 10 dB).

Careful design is required in each of these cases to ensure stable amplifier operation over temper-
ature and parameter variations.

In many cases, decreasing the loop gain to achieve stability is not acceptable due to bias
or amplifier gain constraints. Alternately, the designer many not have control over f , as in the
case of OpAmp circuits. Here the amplifier must operate over a wide range of feedback ratios
determined by the user rather than the designer of the OpAmp. In such cases, compensation
networks are added to the amplifiers to increase gain and phase margins.

e placement of compensation networks in feedback amplifiers is of some importance.
e basic topology of the negative-feedback amplifier of Figure 8.1 (Book 2) is repeated in Fig-
ure 11.16a. e triangle symbol is a linear amplifier of gain A, and the rectangular symbol is the
feedback network of feedback ratio f .e compensation network must be placed in the signal path of
the linear amplifier and the feedback network, as shown in Figure 11.16b. Depending on the feed-
back topology, the compensation network could be placed between amplifier stages internal to a
multi-stage linear amplifier or at the output of a linear amplifier. It is necessary that the signal
pass through the amplifier, compensation network, and the feedback network.

Compensation networks add poles or a combination of poles and zeros to the loop gain
transfer characteristic to achieve desired gain and phase margins. e following compensation
techniques and their passive-component circuit implementations are presented in this section:

• Dominant Pole,

• Lag-Lead,

• Lead,

• Phantom Zero.
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Figure 11.16: (a) Basic negative feedback topology; (b) Compensation network added to the negative
feedback topology.

11.5.1 DOMINANTPOLE (LAG) COMPENSATION
e simplest form of compensation adds an additional dominant (real) pole in the transfer charac-
teristic of the open-loop amplifier gain. e transfer function of the dominant pole compensation
network is,

HDP .s/ D
1

1C
s

!p

;

where the pole location of the network, !p, is significantly smaller than the poles of the uncom-
pensated amplifier: !p << !p1; !p2.

When this compensation network is added to the circuit, the open-loop gain becomes

Acomp .s/ D A .s/HDP .s/ D
A .s/

1C
s

!p

: (11.67)

e dominant pole added by the compensation network is chosen so that the loop gain,
jAcomp.s/f j is 0 dB at a frequency where the poles of the uncompensated open-loop gain A.s/f
contribute negligible phase shift. Typically, the compensation network adds a dominant pole that
reduces the compensated loop gain to unity (0 dB gain) at the lowest high-frequency pole, !p1,
of the open-loop amplifier. e compensation network causes a phase “lag” in the signal path.
erefore, the phase of the compensated loop gain is shifted lower in frequency which results in
increased gain and phase margins.

e method for finding the frequency of the dominant pole can be visualized as in Fig-
ure 11.17. e dominant pole of the compensation network is designed so that its transfer func-
tion has a gain of 0 dB at the first pole frequency of the uncompensated loop gain, with a slope of
�20 dB/decade.e dominant pole frequency of the compensation network,!p, is found through
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the following relationship:

0 D 20 log jAmidbandf j � 20 log
�
!p1

!p

�
; (11.68a)

or simply

!p D
!p1

Amidbandf
: (11.68b)

Magnitude

in dB

0

ωp ωp1 ωp2
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A (s) f

–20 dB/decade

–20 dB/decade

Figure 11.17: Construction technique for dominant-pole location.

A small-signal model of the amplifier can be used to determine the (loaded basic forward)
open-loop transfer function. However, the transfer function of an open-loop amplifier becomes
increasingly cumbersome for open-loop characteristics with more than three poles. erefore,
it may be preferable to use SPICE computer simulations to provide a graphical output of the
compensated loop gain transfer characteristic from which the new pole locations can be found.

A simple dominant-pole compensation network, shown in the shaded area of Figure 11.18,
is added to the open-loop amplifier. As stated previously, the compensation network could, de-
pending on the feedback topology, reside within the open-loop amplifier so that the signal passes
through the linear amplifier, compensation network, and feedback network. Here, the dominant
pole of the compensated open-loop amplifier transfer function is

!p �
1�

Rp CRo
�
Cp
; (11.69)

where Ro is the output resistance of the open-loop amplifier.
e procedure for designing a dominant pole compensation network is as follows:

1. Determine the midband loop gain.

2. Find the dominant high-frequency pole, fp1, or high 3-dB bandwidth of the loop gain
transfer characteristic.
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Figure 11.18: Dominant pole compensation network at output terminal of open-loop amplifier.

3. Design the dominant pole of the compensation network such that the compensated loop
gain drops to 0 dB, with a slope of �20 dB/decade, at the uncompensated high 3-dB cutoff
frequency.

e dominant-pole compensation network is a simple low-pass filter with a cutoff frequency, fp1,
that is significantly lower than the 3-dB frequency (fH ) of the open-loop amplifier. erefore,
the dominant-pole compensation network yields greater phase margin at the expense of bandwidth.

Example 11.6
Consider the OpAmp inverting amplifier shown. e open-loop gain of the amplifier is:

RM .s/ D
�104 

1C
s

2�
�
106

�! 1C
s

2�
�
10 � 106

�! 1C
s

2�
�
40 � 106

�! :

vs

Ro

◦

−

+

+

–

51 Ω

180 Ω

•

e input and output resistances of the OpAmp are Ro D 75� and Ri D 1M�, respectively.
Find the gain and phasemargins and, if necessary, compensate the circuit using a dominant-

pole compensation network.

Solution
Since the feedback topology of the amplifier is a shunt-shunt configuration, the feedback

ratio is f D �1=R2 D �1=180. e gain and phase versus frequency plots of the loop gain,RMf ,
shown essentially zero gain and phase margins. erefore, the amplifier is unstable in its current
configuration.
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A dominant-pole compensation network is used to stabilize the amplifier. e pole location
of the compensation network is found by following the suggested dominant-pole compensation
network design procedure in this section.

e dominant-pole frequency of the uncompensated loop gain, equal to the dominant pole
of the open-loop amplifier, is 1MHz. e midband loop gain is 34.9 dB. e compensation net-
work is designed so that the magnitude of the loop gain at 1MHz is 0 dB. Since the compensation
network has a slope of �20 dB/decade, the location of the dominant pole, fp, of the compensation
network is easily found by using the following formula:

0 D 20 log jRM;midbandf j D 20 log
 
106

fp

!
;

where RM;midband D 34:9 dB. Solving for fp yields fp D 18:0 kHz.
e compensation circuit has a dominant pole at fp D 18:0 kHz. e component values

of the compensation network are found for Rp D 0 and Ro < R2 to ensure that the feedback
resistor does not influence the dominant pole of the compensation network. e capacitance of
the compensation network is therefore

Cp D
1

2�fpRo
D

1

2�
�
18 � 103

�
75

D 0:12�F:

vs ◦

−

+

+

–

51 Ω

180 Ω

•

0.12 µF
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e compensated amplifier is as shown above. e gain and phase response plots for the
feedback amplifier before and after compensation are also shown below. e uncompensated am-
plifier oscillation at 21MHz of is easily observed. e compensated amplifier has a much smoother
gain profile and is clearly stable; however, the high 3-dB frequency is significantly reduced: for this
example to 1.33MHz. Also noticeable in the compensated frequency is a “bump.” Such bumps
are difficult to predict exactly in multipole system, but, if necessary, can be completely eliminated
by further reducing the compensation pole frequency, fp. In this example, the bump is elimi-
nated by reducing fp by a factor of approximately two which results in a high 3-dB frequency
� 750 kHz.
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Example 11.7
Given the two-stage shunt-series feedback amplifier shown, find the gain and phase margins. If
necessary, compensate the circuit using a dominant-pole compensation network. e capacitors
CS ; Cp; CE1, and CE2 are very large and contribute only to the lower 3-dB frequency.

e BJT SPICE model parameters are BF D 200; CJE D 35:5 pF, CJC D 19:3 pF, and
TF D 477 ps.

Solution
DC analysis results in the quiescent values for the circuit: ICQ1 D 1:8mA, VCEQ1 D 2:0V,

ICQ2 D 2:3mA, and VCEQ2 D 5:7V.
e loop gain frequency characteristics are found with SPICE using the following circuit

shown. e circuit is modified to take into account the loading due to the feedback elements. e
input voltage source has been converted to a Norton source as required for shunt-series amplifier
analysis.
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e input and output loading effects due to the feedback network areRF1 D RF CRE2 D

3 k� and RF 2 D 1 k�, respectively. e large capacitor CF is used to block the DC voltages in
order to maintain the bias conditions.

11.5.2 LAG-LEAD (POLE-ZERO) COMPENSATION
Although dominant-pole (lag) compensation is successful in reducing the loop gain to 0 dB be-
fore the phase shift of the open-loop amplifier becomes excessive, the amplifier bandwidth is
significantly reduced. In many cases, design specifications may call for maximum bandwidth and
a specified closed-loop gain. e lag-lead compensation network, which introduces both a pole
and a zero, will usually yield a wider bandwidth amplifier than a dominant-pole network. e
transfer function of the lag-lead network is

HLL .s/ D

1C
s

!z

1C
s

!p

; !p < !z; (11.70)

where !z is the zero location and !p is the pole location of the lag-lead network.
e lag-lead compensated open-loop gain is then

Acomp .s/ D HLL .s/ A .s/ D A .s/

1C
s

!z

1C
s

!p

: (11.71)

e zero is chosen to be at the same frequency as the smallest high-frequency pole of the open-
loop amplifier transfer function. is choice has the effect of increasing the compensated band-
width over the simple dominant-pole compensated amplifier. For example, given an open loop
gain transfer function

A .s/ D
Amidband�

1C
s

!p1

��
1C

s

!p2

��
1C

s

!p3

� : (11.72)

Here !p1 is the smallest high-frequency pole. e lag-lead compensated transfer function be-
comes

Acomp .s/ D HLL .s/ A .s/ D A .s/

1C
s

!z�
1C

s

!p1

��
1C

s

!p2

��
1C

s

!p3

� : (11.73)
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e smallest pole ofA.s/ is canceled by setting the zero of the lag-lead network at the same point;
that is,

!z D !p1: (11.74)

e open-loop gain becomes a three-pole transfer function with a new dominant pole, !p:

A .s/ D
Amidband�

1C
s

!p

��
1C

s

!p2

��
1C

s

!p3

� : (11.75)

Figure 11.19 is a graphical visualization of the method for finding the dominant pole of the lag-
lead compensation network. e dominant pole of the compensation network is designed so that
its transfer function has a gain of 0 dB at the second pole frequency of the uncompensated loop
gain, with a slope of �20 dB/decade. e dominant pole frequency of the compensation network,
!p, is found through the following relationship:

0 D 20 log jAmidbandf j � 20 log
�
!p2

!p

�
; (11.76a)

or

!p D
!p2

Amidbandf
: (11.76b)

Magnitude
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zero

uncompensateddominant
pole

Figure 11.19: Construction technique for finding lag-lead compensation pole and zero location.

e result of the introduction of a zero, in addition to the dominant pole, in the lag-lead com-
pensation network, is an increase in open-loop (and therefore in the closed-loop) bandwidth.

A lag-lead compensation network implementation is shown in Figure 11.20. As stated pre-
viously, the compensation network could, depending on the feedback topology, reside within the
open-loop amplifier so that the signal passes through the linear amplifier, compensation network,
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and feedback network. e dominant pole of the compensated open-loop amplifier transfer func-
tion is,

!p D
1

.Ra CRb CRo/ Cc
; (11.77)

where Ra is the output resistance of the open-loop amplifier. e zero of the compensation net-
work is located at the lowest pole of the open-loop amplifier to increase the loop gain bandwidth,

!z D !p1 D
1

RbCc
: (11.78)
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–

–

Figure 11.20: Lag-lead compensation network at the output terminal of the open-loop amplifier.

e Bode diagrams for the transfer function of the lag-lead compensation network are shown in
Figure 11.21.
e procedure for designing a lag-lead compensation network is:

1. Find the midband loop gain.

2. Find the dominant high frequency pole, !p1, or high 3 dB bandwidth of the loop gain
transfer characteristic.

3. Find the second to the lowest pole, !p2 .

4. Design the compensation network so that the compensated loop gain drops to 0 dB, with a
slope of �20 dB/decade, at !p2 of the uncompensated loop gain characteristics.

5. Design the compensation network so that the zero of the network is at !p1 of the uncom-
pensated loop gain characteristic.

6. In some cases, the zero location may have to be changed due to interactions with the reactive
components of the open-loop amplifier.
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Figure 11.21: Bode diagrams for the lag-lead compensation network.

ere is no loop gain magnitude penalty when using a lag-lead compensation network.

Example 11.8
Compensate the unstable OpAmp inverting amplifier of Example 11.6 using a lag-lead compen-
sation network.

vs ◦

−

+

+

–

51 Ω

180 Ω

•

Ro

Solution:
e open-loop gain of the amplifier was given as:

RM .s/ D
�104 

1C
s

2�
�
106

�! 1C
s

2�
�
10 � 106

�! 1C
s

2�
�
40 � 106

�! ;
and the input and output resistances of the OpAmp areRo D 75� andRi D 1M�, respectively.
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Lag-lead compensation introduces a zero at the first pole of the open-loop gain and a pole
at a fraction of the second pole frequency.

fz D fp1 D 1MHz and fpc D
fp2

Amidbandf
D
10 � 106

.55:56/
D 180 kHz:

If onemakes the design decision,Cc D 3 nF, the compensation network resistors can be calculated
to be:

Rb D
1�

2� � 106
�
Cc

D 53:0� and Ra D
1�

2� � 180 � 103
�
Cc

�Rb �Ro D 167�;

both of which are standard values. Shown below is the circuit diagram for the compensated am-
plifier. Note that the compensation network lies within the feedback loop.

vs ◦

−

+

+

–

51 Ω

53 Ω

180 Ω

167 Ω

•

3 nF

Shown below are the Bode response plots for the uncompensated amplifier and the com-
pensated amplifier. As was the case in Example 11.6, the compensated amplifier has a much
smoother gain profile and is clearly stable; however, the high 3-dB frequency is significantly
higher than for dominant-pole compensation. For this example the high 3-dB frequency is
13.3MHz: approximately a factor of ten higher.
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11.5.3 LEADCOMPENSATION (EQUALIZER)
e midband loop gain is often fixed by the specifications on the closed-loop gain and bandwidth
of an amplifier. If a dominant pole (or a lag-lead) network results in a bandwidth that is too
narrow, an alternate solution must be found. Since stability depends only on the phase margin, a
compensation network that would introduce phase lead at this point would be the desired alternate
solution. A simple lead network, or equalizer, has a transfer function,

HEQ .s/ D
s C !eqz

s C !eqp
; !eqp >> !eqz: (11.79)

Note that the transfer function of the lead compensation network is similar to the lag-lead com-
pensation characteristics in Equation (11.69), except that here the pole occurs at a higher fre-
quency than the zero.

Using Equation (11.76), the lag-lead compensated open-loop gain is,

Acomp .s/ D HEQ .s/ A .s/ D A .s/
s C !eqz

s C !eqp
: (11.80)

e zero is chosen at the second high-frequency pole location of the loop gain transfer function,
!eqz D !p2. e pole location is chosen to be significantly large so that !eqp does not affect
the bandwidth of the loop-gain. is choice has the effect of increasing the compensated band-
width over both the dominant pole and lag-lead compensated amplifiers. However, there is a gain
penalty that is incurred when using lead compensation networks. e midband gain yields,

HEQ .0/ D
!eqz

!eqp
: (11.81)

is attenuation must be taken into account since it directly impacts midband gain.
Figure 11.22 is a graphical visualization of the method for finding the zero of the lead

compensation network. e zero of the compensation network is designed so that its transfer
function has zero at the second pole frequency of the uncompensated loop gain, with a slope of
�20 dB/decade, !eqz D !p2. e zero frequency of the compensation network is found through
the following relationship:

0 D 20 log jAmidbandj � 20 log
�
!p1

!z

�
; (11.82a)

or simply,

!z D
!p1

Amidband
: (11.82b)

For example, if an open-loop transfer function has the form,

A .s/ D
Amidband�

1C
s

!p1

��
1C

s

!p2

��
1C

s

!p3

� ; (11.83)
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Figure 11.22: Construction technique for finding the lead compensation pole and zero locations.

where !p1 is the smallest pole, the lead compensated loop-gain transfer function becomes,

Acomp .s/ f D

AmidbandHEQ .0/ f

�
1C

s

!eqz

�
�
1C

s

!eqp

��
1C

s

!p1

��
1C

s

!p2

��
1C

s

!p3

� : (11.84)

e second lowest pole of A.s/ is canceled by setting the zero of the lead network at the same
point; that is,

!eqz D !p2: (11.85)
e lead network cancels the second-lowest amplifier pole. e pole in the lead compensation
network is chosen to be large enough so that it has little effect on the phase margin. e open-
loop gain becomes the three-pole transfer function,

Acomp .s/ f D
AmidbandHEQ .0/ f�

1C
s

!eqp

��
1C

s

!p1

��
1C

s

!p3

� ; (11.86)

where !eqp >> !p3 > !p1 or if !p1 is dominant, !p3 >> !eqp >> !p1. e introduction of a
zero in the lead compensation network results in an increase in open-loop (and therefore in the
closed-loop) bandwidth.

A lead compensation network implementation is shown in Figure 11.23. As stated previ-
ously, the compensation network could, depending on the feedback topology, reside within the
open-loop amplifier so that the signal passes through the linear amplifier, compensation network,
and feedback network. e zero of the compensation network is located at the second lowest pole
frequency of the open-loop amplifier characteristics to increase bandwidth,

!eqz D
1

RaCc
: (11.87)
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Figure 11.23: Lead compensation network at output terminal of open-loop amplifier.

e pole location of the compensation network,

!eqp D
1

.Ra==Rb/ Cc
(11.88)

is chosen to be significantly large so as to have minimal effect the loop gain crossover point (0 dB
point). Using Equations (11.81), (11.87), and (11.88), yields the expression for the attenuation
due to the compensation network,

H .0/ D
Rb

Ra CRb
: (11.89)

e actual output signal attenuation taking into account the output resistance of the open-loop
amplifier is,

H 0 .0/ D
Rb

Ro CRa CRb
: (11.90)

e resistor values must be carefully selected so that the closed-loop amplifier gain is acceptable.
e Bode diagrams for the transfer function of the lead compensation network are shown

in Figure 11.24.
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Figure 11.24: Bode diagrams for the lead compensation network.

Example 11.9
Compensate the unstable OpAmp inverting amplifier of Example 11.6 using a lead compensation
network.

Solution
e open-loop gain of the amplifier was given as:

RM .s/ D
�104 

1C
s

2�
�
106

�! 1C
s

2�
�
10 � 106

�! 1C
s

2�
�
40 � 106

�! ;
with output resistance, Ro D 75�.

Lead compensation requires that a zero be inserted at the second pole frequency and a pole
at a frequency higher than the third pole frequency. e significant equations are:

fz D fp2 D
1

2�RaCc
and fpc D

1

2� .Ra==Rb/ Cc
:

With the design choice Cc D 0:2 pF and fpc D 2fp3 D 80MHz, the resistor values in the circuit
of Figure 11.23 are determined to be:

Ra D 79:6 k� and Rb D 11:4 k�:

Shown below are the Bode response plots for the uncompensated amplifier and the com-
pensated amplifier. e compensated amplifier has a very smooth gain profile and is clearly stable.
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e high 3-dB frequency is approximately the same as for lag-lead compensation: it is approx-
imately 10.5MHz for this case. e gain reduction suffered by the design choices for the lead
compensation network was approximately 1 dB: a reduction from 44.95 dB to 43.94 dB.
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11.5.4 PHANTOMZEROCOMPENSATION
Instead of shaping the open-loop transfer characteristics of an amplifier, the loop gain may be
altered by the addition of reactive elements in the feedback network, f , for compensating a feed-
back amplifier. e use of the reactive elements in the feedback circuit is essentially equivalent to
adding lead compensation: the locations of the zero and the pole for a phantom compensation
network are the same as that of the lead compensation network. Figure 11.25 shows phantom
zero compensation for a shunt-shunt feedback amplifier. e shaded area in the figure consti-
tutes the phantom compensation network. Note that removal of the capacitor, Cf , results in a
simple resistive shunt-shunt feedback amplifier.

Another slightly different version of phantom zero compensation is the Miller compen-
sation method shown in Figure 11.26. In the Miller compensation method, a capacitor, Cf , is
placed in shunt between the collector and base (drain and gate for FETs) of an internal transistor
amplifier stage that establishes the amplifier’s lowest high frequency pole, !p1. e effect will be
an increase in the input capacitance due to Miller’s effect, which in turn, reduces !p1 and results
in a dominant pole.

e advantage of Miller’s compensation is the reduction of the capacitance value compared
to the techniques shown in Sections 11.5.1–11.5.3. e small value of Cf is multiplied by the
Miller-effect factor (amplifier gain) resulting in amuch larger capacitance value. Since small values
of Cf can be used, Miller’s compensation may be used in integrated circuit design.
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Figure 11.25: Phantom zero compensation for a shunt-shunt feedback amplifier.
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Figure 11.26: Miller’s compensation method using shunting capacitor.

11.6 CONCLUDINGREMARKS
Frequency response of feedback amplifiers is discussed in this chapter. e effects of feedback
on the poles in the low and high frequency regions were investigated. It was shown that pole
locations changed with feedback. In particular, the low frequency pole decreased with increased
return ratio and the high frequency pole increased with increased return ratio.is “pole-splitting”
phenomenon was discussed for single, double, and multipole feedback frequency responses.

Time domain effects of feedback were also shown to be dependent on the return ratio. e
rise and delay times (with step inputs) decrease with increased return ratio, while overshoot and
settling times increase once the amplifier becomes underdamped. Increased feedback proved to
reduce the damping coefficient in double pole feedback amplifiers resulting in a decrease in the
percent tilt.
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e root-locus method was introduced as a tool to analyze the pole behavior with feedback.
A simple set of rules was established to aid in the construction of approximate root-locus plots of
amplifiers described by high-frequency poles. e concept of dominant poles was used to simplify
amplifier frequency characteristics when applicable.

e stability of amplifiers was investigated. Stable systems were defined and the conditions
for instability discussed. Design goals for stability were related to frequency response analysis (or
Bode plots). Gain and phase margins were defined and used to quantify stability. An alternate
method, developed by Nyquist, for determining stability was also discussed.

Methods to compensate for unstable amplifiers were established. ese methods include
the addition of electrical networks to shift the pole locations of the amplifiers. e trade-offs for
each compensation technique were presented.

Summary Design Example: Fiber-Optic Transimpedance Preamplifier
Fiber-optic receivers consist of a photodiode, which can be modeled as a current source and a
parallel capacitor, and amplifying electronics. e first stage of amplification, which is often called
the preamplifier is critical in determining the performance of a fiber-optic receiver. A moderately
low input resistance amplifier is often used as the preamplifier. e low input resistance allows for
the RC time constant of the amplifier and the photodiode shunt capacitance to be small, allowing
for large bandwidth operation. Since the input signal can be modeled as a current source, output
voltages are desired, and large transresistances are required to amplify the low input currents, a
transimpedance (transresistance) amplifier is often used.

Low cost transistor components can be used for low bandwith applications. Low data rate
(corresponding to moderate bandwidth) fiber-optic links are often used in simple computer net-
works. For a 32 kbit/s link, a high frequency cutoff of approximately 22.4 kHz is required. With
proper digital encoding, the low cutoff frequency is approximately 1 kHz. e minimum mid-
band transresistance requirement is �2000. A photodiode with a 10 pF shunt capacitance and
responsivity of 0.9A/W is used. A C6V power supply is available. e npn BJT parameters are:

ˇF D 150; VA D 160V; rb D 30�;

Cibo D 8 pF at VEB D 0:5V; Cobo D 4 pF at VCB D 5V; and fT D 300MHz:

Design the fiber-optic preamplifier to meet the required specifications.
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Solution:
e transimpedance amplifier topology is shown below:

vo

ip
RE

Rf

RC

+VCC

Cp

◦

◦

• •

• •

•

Since the transresistance must be at least �2000�, let Rf D 3:3 k�, which will allow the ampli-
fier to exceed the required specifications.

Also let IC D 3:8mA and VCE D 0:785V. is allows for a small value for r� D 1:02 k�
and gm D 0:146.

Let the value of the emitter degenerative resistor RE D 27�, then the collector resistor is
RC D 3:9 k�.

e midband loaded forward amplifier is shown below:

vo

ip   Rf

3.3 kΩ

if

Ro

Ri

◦

◦

•

• •

• •• •

  RE

27 Ω

  RC

3.9 kΩ

  Rf

3.3 kΩ

+

–

e feedback quantity is,

f D
if

vo
D

�1

3300
:

e input resistance is,

Ri D 3300 kŒr� C rb C .1C gmr�/ 27� D 2 k�:



902 11. FEEDBACKAMPLIFIER FREQUENCYRESPONSE

e output resistance is,
Ro D 3:9 k==3:3 k D 1:79 k�:

e amplifier forward transresistance is,

RM D
vo

ip
D AvRi D �105:2 k�:

e feedback quantities of interest are:

D D 1C Af D 32:9

Rif D
Ri

D
D 60:8� Rof D

Ro

D
D 54:3�

RMf D
RM

D
D �3:2 k;

which meets the midband transresistance specification.
One finds the frequency response of the transimpedance amplifier by determining the ca-

pacitances for the BJT and the frequency response of the loaded forward amplifier.

CJC D Cobo

�
1C

VCB

0:75

�0:33
D 7:83 pF;

CJE D Cibo

�
1C

VEB

0:75

�0:33
D 9:47 pF;

TF D
1

2�fT
�

�Vt

jICT j

26664 CJE�
1 �

0:7

0:75

�0:33 C Cobo

37775 D 460 ps;

and

C� D
CJC�

1C
VCB

0:75

�0:33 D 7:6 pF:

C� D
gm

!T
� C� D 70 pF:

e high-frequency response is found using the equations found in Table 9.3 for a Common-
emitter with emitter-degeneration amplifier:

!H D

�
R0
SCr�C .1CˇF /RE

��
.1CˇF /

�
R0
SRCCR0

SRECRCRE
�

Cr�
�
R0
SCRC

��
C�Cr�

�
R0
S CRE

�
C�

D 1:16Grad=sec ) 184 kHz:



11.7. PROBLEMS 903

erefore, the high frequency cutoff of the feedback amplifier is,

!H D D � 184 kHz D 6:0MHz:

Which easily fulfills the specification for the high frequency cutoff.
Since the preamplifier does not use external capacitors, the low frequency response extends

to DC.

11.7 PROBLEMS

11.1. e voltage gain of an amplifier is described by the following quantities:

midband gain - 1000

low 3 dB frequency - 100Hz

high 3 dB frequency - 50 kHz

(a) Assume that the high- and low-frequency responses are characterized by single
poles. Feedback is to be applied to increase the bandwidth of the amplifier by a
factor of ten (10). Assuming the feedback network does not load the initial ampli-
fier, what return difference is necessary to accomplish the design goal? Determine
the new midband gain and the high and low 3 dB frequencies after the application
of feedback.

(b) Upon a more careful analysis of the original amplifier (prior to application of feed-
back) it was discovered that a second high-frequency pole exists at 1MHz. What
effect will this second pole have on the feedback amplifier specified by the results of
part a)?

11.2. An audio amplifier is described by two high-frequency poles at 25 kHz and 60 kHz. It is
desired to increase the bandwidth with the application of feedback without significantly
destroying the step response of the amplifier. A design goal of no more than 2% overshoot
is established. Assuming that the feedback network will not change the pole location of
the original amplifier, determine the following:

(a) the maximum high 3 dB frequency that can be obtained.

(b) the rise time before and after the application of feedback.

11.3. e response to an OpAmp non-inverting amplifier to a unit step voltage input is shown.
Assume the amplifier frequency response is characterized by a single high-frequency pole.
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3.2

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

t(ns)

v(t)

0 2 4 6 8 10 12 14 16

(a) Determine the high 3 dB frequency.
(b) Determine the gain bandwidth product (GBP) of the amplifier.
(c) If the OpAmp has an open loop gain of 110 dB, what is the 3 dB frequency of the

OpAmp open loop gain?

11.4. An amplifier is described by two low-frequency poles at

fL1 D 50Hz fL2 D 4Hz:

(a) Determine the low 3 dB frequency of this amplifier.
(b) Estimate the sag that a 1 kHz square wave will experience passing through this

amplifier.
(c) It is desired to reduce the sag to 1% with the application of feedback. What return

ratio, D, will result in that amount of sag?
(d) What is the new 3 dB frequency of the resultant feedback amplifier?

11.5. e current gain of an amplifier is described by the following quantities:
midband gain - 10A/mA
low 3 dB frequency - 120Hz
high 3 dB frequency - 2.4MHz

(a) Assume the high- and low-frequency responses are characterized by single poles.
Feedback is to be applied to increase the high 3 dB frequency to 20MHz. Assuming
the feedback network does not load the initial amplifier, what return difference is
necessary to accomplish the design goal? Determine the new midband gain and the
low 3 dB frequency after the application of feedback.

(b) Upon a more careful analysis of the original amplifier (prior to the application of
feedback) it was discovered that a second low-frequency pole exists at fL2 D 10Hz
and a second high-frequency poles exists at fH2 D 48MHz. What effect will these
initially non-dominant poles have on the feedback amplifier specified by the results
of part a)?
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11.6. An audio amplifier is described by a midband gain of 420, a single low-frequency pole
at:

fL1 D 100Hz;

and two high-frequency poles at:

fH1 D 14 kHz and fH2 D 26 kHz:

e amplifier is to be redesigned as a feedback amplifier so that the midband region will
be extended to at least cover the frequency range 40Hz � f � 20 kHz. Assuming that
the application of feedback does not alter the original amplifier, determine the following
properties of the redesigned amplifier:

(a) the minimum feedback ratio, f , that will accomplish the new design goals.
(b) the feedback return difference, D.
(c) the high and low 3 dB frequencies.
(d) the midband gain.
(e) are there any peaks in the frequency response? If so, determine the peak character-

istics.

11.7. An audio amplifier is described by a midband gain of 251, two low-frequency poles at

fl1 D 60Hz and fl2 D 20Hz;

and two high-frequency poles at

fh1 D 40 kHz and fh2 D 100 kHz:

e amplifier is to be redesigned as a feedback amplifier so that the midband region
will be as large as possible without introducing any peaks in the frequency response.
Assuming that the application of feedback does not alter the original amplifier, determine
the following properties of the redesigned amplifier:

(a) the minimum feedback ratio, f , that will accomplish the new design goals.
(b) the feedback return difference, D.
(c) the high and low 3 dB frequencies.
(d) the midband gain.

11.8. A designer is attempting to create a feedback amplifier with a midband voltage gain of 40.
e basic forward gain elements of this amplifier are two amplifier stages (each described
by single high- and low-frequency poles) with properties:
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#1 #2
midband voltage gain 15 20
high 3 dB frequency 30 kHz 20 kHz
low 3 dB frequency 40Hz 30 Hz

Assume that series interconnection of the amplifier stages does not change the above
stated properties.

(a) Apply global feedback to the amplifier so that a gain of 40 is obtained and determine
the resultant frequency response.

• •vi vo
A1 A2g

f

(b) Unfortunately the technique of part a results in significant peaks in the frequency
response. An alternate approach is proposed whereby an attenuator is placed in the
forward gain path as shown. Determine the values of the attenuation factor, g, and
feedback ratio, f , that will result in maximum bandwidth, no peaks in the frequency
response, and a voltage gain of 40. Note, for this configuration, the feedback gain is
given by:

Af D
A1gA2

1C f A1gA2
:

(c) What are the high and low 3 dB frequencies for the amplifier designed in part b)?

11.9. Another circuit topology that might be used to accomplish the design goals of the pre-
vious problem incorporates both local and global feedback. For the topology shown, de-
termine the local and global feedback ratios, fLocal, and fGlobal, that will maximize the
bandwidth and produce a voltage gain of 40 without introducing any peaks in the fre-
quency response. e individual, non-interacting amplifier stages are described by:

• • •

•

vi vo
A1 A2

fglobal

flocal
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#1 #2
midband voltage gain 15 20
high 3 dB frequency 30 kHz 20 kHz
low 3 dB frequency 40Hz 30Hz

11.10. A macromodel for a �A741 Bipolar OpAmp is provided in most SPICE-based circuit
simulators.

(a) Use SPICE to determine the frequencies of the first two high-frequency poles of
the �A741 OpAmp. Assume a resistive load of 820�.

(b) Design a simple inverting amplifier with a voltage gain of �10. Use SPICE to de-
termine the high 3 dB frequency of this amplifier.

(c) Compare the results of part b) to those predicted by feedback theory.

11.11. A macromodel for an LM324 Bipolar OpAmp is provided in most SPICE-based circuit
simulators.

(a) Use SPICE to determine the frequencies of the first two high-frequency poles of
the LM324 OpAmp. Assume a resistive load of 560�.

(b) Design a simple non-inverting amplifier with a voltage gain of C8. Use SPICE to
determine the high 3 dB frequency of this amplifier.

(c) Compare the results of part b) to those predicted by feedback theory.

11.12. A macromodel for an LF411 JFET input OpAmp is provided in most SPICE-based
circuit simulators.

(a) Use SPICE to determine the frequencies of the first two high-frequency poles of
the LF411 OpAmp. Assume a resistive load of 1 k�.

(b) Design a simple non-inverting amplifier with a voltage gain of C15. Use SPICE to
determine the high 3 dB frequency of this amplifier.

(c) Compare the results of part b) to those predicted by feedback theory.

11.13. e transistors in the given feedback amplifier circuit are 2N2222. e quiescent condi-
tions have been previously determined to be:

Ic1 � Ic2 � 2:0mA:
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vs

Q1

Q2

◦

◦
•

• •

•

•

•

•

+

–

10 μF

10 μF

1 kΩ

12 V

2 kΩ

330 Ω

100 Ω

3.3 kΩ

4.7 kΩ

vo

(a) Determine the midband voltage gain and approximate 3 dB frequencies of the am-
plifier.

(b) Compare hand calculations to PSpice simulation.

11.14. For the single stage feedback amplifier shown, determine the high and low 3 dB frequen-
cies.

e FET parameters are:

K D 1mA=V2 Crss D 1:3 pF
VT D 1:5V Ciss D 5:0 pF
VA D 160V:

vs

vo

◦

◦•

•

•

•

+

–

22 μF

12 V

100 Ω

100 μF

3.3 kΩ

1.8 kΩ

8.2 kΩ
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11.15. e transistors in the given feedback amplifier circuit are 2N3904. e quiescent condi-
tions have been previously determined to be:

Ic1 � Ic2 � 1:32mA:

vs

vo

◦

◦

•

••

•

•

•

• • •

•
+

–

30 V

500 Ω 200 Ω

10 μF

5.6 μF

Q1

Q2

1.2 kΩ 1.6 kΩ

6.7 kΩ

20 kΩ 12 kΩ

10 μF

(a) Determine the midband voltage gain and approximate 3 dB frequencies of the am-
plifier.

(b) Compare hand calculations to PSpice simulation.

11.16. For the amplifier shown, determine the high and low 3 dB frequencies. e JFETs are
described by:

VPO D �2V IDSS D 4mA VA D 200V
Crss D 1:0 pF Ciss D 5:0 pF:
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vs

vo

◦

◦

•

•

•

•

••

•

• • •

+

–

15 V

330 Ω 870 kΩ910 kΩ

22 μF

0.1 μF

2.2 kΩ

75 Ω

4.7kΩ3.9 kΩ

100 μF

180 Ω

Verify the analysis using SPICE.

11.17. e transistor in the given feedback amplifier circuit is a 2N3904 (description is given in
the PSpice libraries).

vi

vo

◦

◦

•

•

•

+

– 82 Ω

C

47 kΩ

2.2 kΩ

500 Ω

10 V

(a) Complete the amplifier design by determining a realistic value for the capacitor, C ,
that will result in a low 3 dB frequency � 100Hz.

(b) Determine the high 3 dB frequency of the amplifier.
(c) Use SPICE to determine the high and low 3 dB frequencies of the final design:

compare the simulation results to hand calculations. Comment.

11.18. Determine the high and low 3 dB frequencies for the feedback amplifier shown. Assume
the following circuit parameters:
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BJTs - 2N2222

Coupling capacitors - 10 �F

Bypass capacitor - 1000 �F

Feedback capacitor - 1000 �F .

Compare results to SPICE simulation.

vs

vo

◦

◦

•

•

•

•

•• •

• •

•

•

•

• • •

+

–

12 V

470 Ω 100 Ω10 kΩ

1.2 kΩ

2.2 kΩ

500 Ω

4.4 kΩ82 kΩ 1 kΩ

1.2 kΩ

A

11.19. Compute the high and low 3 dB frequencies for the amplifier of the previous problem if
the mixing point is moved to location “A.” Compare results to SPICE simulation.

11.20. Determine the high and low 3 dB frequencies for the feedback amplifier shown. Assume
the following circuit parameters:

BJTs - 2N2222

Coupling capacitors - 20 �F

Bypass capacitor - 2200 �F
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Q1 Q2

CL

(a) Compare results to SPICE simulation.

(b) e frequency response for this circuit is not flat in the midband. Modify the circuit
so that themidband region is flat. Use SPICE to verify that the designmodifications
improve the midband region.

11.21. In the previous problem the load capacitor, CL, is included within the feedback amplifier
due to the sampling point of the feedback network. Assume the sampling point is moved
to the collector ofQ2 and a 100�F capacitor is inserted in series with the 1.2 k� feedback
resistor: this change essentially removes CL from the feedback amplifier.

(a) Determine the high and low 3 dB frequencies of the modified circuit.

(b) Compare results to SPICE simulation.

11.22. Aparticular series-shunt feedback amplifier can be described as having amidband voltage
gain of 10,000 with three high-frequency poles at the following frequencies:

fp1 D 1MHz fp2 D 4MHz fp3 D 25MHz;

(a) Write an expression for Av as a function of frequency.

(b) Draw the idealized Bode magnitude and phase plots. On the graph label all slopes
and use a small circle to indicate where the slope changes.

(c) At what frequency will this feedback amplifier oscillate (if it oscillates at all)?

(d) In order to have at least 45ı phase margin, what is the amount of feedback that can
be added? Is this a maximum or a minimum for stable amplifier operation?

(e) What is the gain margin for the amount of feedback determined in part c)?
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11.23. An amplifier can be described by a midband gain of 251, two low-frequency poles at

fl1 D 60Hz and fl2 D 20Hz;

and four high-frequency poles at

fh1 D 40 kHz fh2 D 100 kHz fh3 D 200 kHz and fh4 D 1MHz:

(a) Draw the idealized Bode magnitude and phase plots. On the graph label all slopes
and use a small circle to indicate where the slope changes. Compare these straight-
line approximate curves to exact curves (use a software package to generate the exact
curves).

(b) At what frequency will this feedback amplifier oscillate (if it oscillates at all)?
(c) In order to achieve a gain margin of at least 5 dB, what is the amount of feedback

that can be added? Is this a maximum or a minimum for stable amplifier operation?
(d) What is the phase margin for the amount of feedback determined in part c)?

11.24. If the loop gain of an inverting amplifier is

A .j!/ f D
�250

.1C j!/ .1C j 0:01!/2
:

Determine whether the amplifier is stable using:

(a) the Nyquist plot
(b) the gain and phase plot of the loop gain.

11.25. e loop gain of an inverting amplifier is

A .j!/ f D
�K

.1C j 0:01!/3
:

(a) If K D 5, is the amplifier stable?
(b) What value of K defines a gain margin of greater than 10 dB and phase margin of

greater than 50ı?

11.26. e loop gain of an amplifier is

A .j!/ D
24000�

1C
j!

2 � 105

�2 �
1C

j!

105

� :
with a feedback factor f D �5,
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(a) plot the magnitude and phase of the loop gain
(b) determine whether the amplifier is stable. If the amplifier is stable, determine the

gain and phase margins.

11.27. An OpAmp with an open loop gain of

A .j!/ D
105�

1C
j!

105

�2 �
1C

j!

102

� :
is used to design an inverting amplifier with a gain of �125. Determine the gain and
phase margins of the inverting amplifier using:

(a) the Nyquist plot
(b) the gain and phase plot of the loop gain.

11.28. Sketch the Nyquist plot of the loop gain for a three pole amplifier with a DC open
loop gain of Ao D �1100, and open-loop poles at 500 kHz, 1.1MHz, and 1.8MHz.
Determine whether the amplifier is stable with the following feedback factors:

(a) f D �0:005

(b) f D �0:02

(c) Determine the maximum value of f for which the amplifier is stable.

11.29. A three pole amplifier has an open-loopDC gain of �1000 and poles located at 1.1MHz,
12MHz, and 28MHz. Dominant pole compensation is applied to the amplifier.

(a) Find the proper location of the dominant pole.
(b) Determine the maximum value of the feedback factor f for which this compensated

amplifier is marginally stable.
(c) Determine the maximum value of the feedback factor f for which this compensated

amplifier has a gain margin greater than 10 dB and phase margin of at least 50ı?

11.30. Lag-lead compensation is used with an amplifier with a DC gain of �1200 and poles at
1MHz, 10MHz, and 220MHz. e zero of the compensation network is selected to
cancel the 1MHz pole of the uncompensated amplifier.

(a) Find the pole of the lag-lead compensation network so that the amplifier is stable
with a phase margin of 50ı when the feedback factor is f D �0:01.

(b) Determine the bandwidth of the compensated feedback amplifier.
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11.31. An inverting OpAmp inverting amplifier is to be stabilized using lead compensation, as
shown. e OpAmp input and output resistances are Ri D 1M� and Ro D 75�. e
open-loop gain of the OpAmp is

A .j!/ D
24000�

1C
j!

2 � 105

�2 �
1C

j!

105

� :
(a) Complete the design for a phase margin of 50ı.

(b) Confirm the result with SPICE.

◦

◦

–15 V

+15 V

8.2 kΩ

Cc

Ra

Rp

51 kΩ

RF

10 kΩ

RS

Rb

−

+

vi

vo

•

• •

•

11.32. An inverting OpAmp inverting amplifier is to be stabilized using dominant pole com-
pensation, as shown. e OpAmp input and output resistances are:

Ri D 1M� and Ro D 75�:

e open-loop gain of the OpAmp is:

A .j!/ D
24000�

1C
j!

2 � 105

�2 �
1C

j!

105

� :
(a) Complete the design for a phase margin of 50ı.

(b) Confirm the result with SPICE.



916 11. FEEDBACKAMPLIFIER FREQUENCYRESPONSE

◦

◦

–15 V

+15 V

8.2 kΩ

CcRp

51 kΩ

RF

10 kΩ

RS

−

+

vi

vo

•

•

11.33. e lag-lead compensated amplifier shown uses an OpAmp with input and output resis-
tances of Ri D 1M� and Ro D 75�, respectively. e open-loop gain of the OpAmp
is

A .j!/ D
1000�

1C
j!

2� � 106

��
1C

j!

2� � 106

� :
(a) Complete the design for a phase margin of 50ı.
(b) Confirm the result with SPICE.

◦

◦

–15 V

+15 V

1 kΩ
Cc

Rp

10 kΩ

RF

2k Ω

RS

−

+
Rb

vi

vo

•

•

11.34. For the shunt-series feedback amplifier shown below, the transistor characteristics are:
NPN: ˇF D 200; VA D 120V, CJC = 7.31 pF, CJE = 22.01 pF, and TF = 411 ps
PNP: ˇF D 200; VA D 100V, CJC = 14.76 pF, CJE = 19.82 pF, and TF = 603.7 ps.
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(a) Determine the value of the feedback resistor, Rf , for unstable amplifier operation.

(b) Using the value of Rf found in a), design a stable dominant pole compensated
amplifier.

(c) Confirm the results using SPICE.

vs

vo

◦

◦

◦ ◦

◦•

•

•

•

• •

•

•

••
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VCC
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RE2

+

–

+

–

11.35. Design a lead compensated amplifier using the result found in part a) of Problem 11.34.
Confirm the results using SPICE.

11.36. Design a lag-lead compensated amplifier using the result found in part a) of Problem
11.34. Confirm the results using SPICE.

11.37. For the differential amplifier shown, assume identical transistors with

ˇF D 120; VA D 175V; CJE D 19 pF; CJE D 36 pF; and TF D 3:3 ns:

(a) Determine the value of the feedback resistor, Rf1, for unstable amplifier operation.

(b) Using the value of Rf1 found in a), design a stable dominant pole compensated
amplifier.

(c) Confirm the results using SPICE.
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•
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vi1

11.38. Design a lead compensated amplifier using the result found in part a) of Problem 11.37.
Confirm the results using SPICE.

11.39. e amplifier shown uses identical NMOSFETs with the following characteristics:

K D 1:25mA=V2; VT D 2V; VA D 150V; Ciss D 12 pF; Crss D 2 pF:

(a) Determine the value of the feedback resistor, Rf , for unstable amplifier operation.

(b) Using the value of Rf found in a), design a stable dominant pole compensated
amplifier.

(c) Confirm the results using SPICE.
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11.40. Design a lead compensated amplifier using the result found in part a) of Problem 11.39.
Confirm the results using SPICE.

11.41. Design an analog amplifier to meet the following specifications:

• Input - a differential amplifier
• Input voltage - at least ˙1mV
• Midband voltage gain - 1000 ˙ 10

• Midband input resistance - at least 1M�

• Midband output resistance - less than 100�
• Low 3 dB frequency - 100Hz, maximum
• High 3 dB frequency - 1MHz, minimum

Design limitations are:

• Coupling capacitors are to be limited to 1�F, maximum
• Bypass capacitors are to be limited to 1000�F, maximum
• At least one BJT and one JFET must be used .

Active devices are limited to the following types:

• 2N2222A NPN bipolar transistor
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• 2N2907A PNP bipolar transistor
• 2N3904 NPN bipolar transistor
• 2N3906 PNP bipolar transistor
• 2N3819 N-channel Junction field effect transistor
• 2N4393 N-channel Junction field effect transistor

A report on the design is required. Minimum requirements for the report include:

• A complete theoretical analysis of the design
• SPICE verification of design specifications
• Comparisons, conclusions, and comments

11.42. Design an analog feedback amplifier to meet the following specifications:

• Midband voltage gain - 100 ˙ 5 (driving a 1 k� load)
• Midband input resistance - at least 40 k�
• Midband output resistance - less than 50�
• Low 3 dB frequency - 30Hz, maximum
• High 3 dB frequency - 10MHz, minimum
• Output voltage swing - ˙4V (from Q point), minimum

Design limitations are:

• Coupling capacitors are to be limited to 1�F, maximum
• Bypass capacitors are to be limited to 1000�F, maximum

Active devices are limited to the following types:

• 2N2222A NPN bipolar transistor
• 2N2907A PNP bipolar transistor
• 2N3904 NPN bipolar transistor
• 2N3906 PNP bipolar transistor
• 2N3819 N-channel JFET
• 2N4393 N-channel JFET

A report on the design is required. Minimum requirements for the report include

• A complete theoretical analysis of the design
• SPICE verification of design specifications
• Comparisons, conclusions, and comments.
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